blob: dc163b0b3a9c15c76e748560c4cd8c1d003fdb87 [file] [log] [blame] [raw]
package li.cil.oc.util
import li.cil.oc.Settings
import li.cil.oc.server.component.WirelessNetworkCard
import net.minecraft.block.Block
import net.minecraftforge.event.ForgeSubscribe
import net.minecraftforge.event.world.WorldEvent
import scala.collection.mutable
object WirelessNetwork {
val dimensions = mutable.Map.empty[Int, RTree[WirelessNetworkCard]]
@ForgeSubscribe
def onWorldUnload(e: WorldEvent.Unload) {
if (!e.world.isRemote) {
dimensions.remove(e.world.provider.dimensionId)
}
}
@ForgeSubscribe
def onWorldLoad(e: WorldEvent.Load) {
if (!e.world.isRemote) {
dimensions.remove(e.world.provider.dimensionId)
}
}
def add(card: WirelessNetworkCard) {
dimensions.getOrElseUpdate(dimension(card), new RTree[WirelessNetworkCard](Settings.get.rTreeMaxEntries)((card) => (card.owner.xCoord + 0.5, card.owner.yCoord + 0.5, card.owner.zCoord + 0.5))).add(card)
}
def update(card: WirelessNetworkCard) {
dimensions.get(dimension(card)) match {
case Some(tree) =>
tree(card) match {
case Some((x, y, z)) =>
val (dx, dy, dz) = (
(card.owner.xCoord + 0.5 - x).abs,
(card.owner.yCoord + 0.5 - y).abs,
(card.owner.zCoord + 0.5 - z).abs)
if (dx > 0.5 || dy > 0.5 || dz > 0.5) {
tree.remove(card)
tree.add(card)
}
case _ =>
}
case _ =>
}
}
def remove(card: WirelessNetworkCard) = {
dimensions.get(dimension(card)) match {
case Some(set) => set.remove(card)
case _ => false
}
}
def computeReachableFrom(card: WirelessNetworkCard) = {
dimensions.get(dimension(card)) match {
case Some(tree) if card.strength > 0 =>
val range = card.strength + 1
tree.query(offset(card, -range), offset(card, range)).
filter(_ != card).
map(zipWithDistance(card)).
filter(_._2 <= range * range).
map {
case (c, distance) => (c, Math.sqrt(distance))
}.
filter(isUnobstructed(card))
case _ => Iterable.empty[(WirelessNetworkCard, Double)] // Should not be possible.
}
}
private def dimension(card: WirelessNetworkCard) = card.owner.worldObj.provider.dimensionId
private def offset(card: WirelessNetworkCard, value: Double) =
(card.owner.xCoord + 0.5 + value, card.owner.yCoord + 0.5 + value, card.owner.zCoord + 0.5 + value)
private def zipWithDistance(reference: WirelessNetworkCard)(card: WirelessNetworkCard) =
(card, card.owner.getDistanceFrom(
reference.owner.xCoord + 0.5,
reference.owner.yCoord + 0.5,
reference.owner.zCoord + 0.5))
private def isUnobstructed(reference: WirelessNetworkCard)(info: (WirelessNetworkCard, Double)): Boolean = {
val (card, distance) = info
val gap = distance - 1
if (gap > 0) {
// If there's some space between the two wireless network cards we try to
// figure out if the signal might have been obstructed. We do this by
// taking a few samples (more the further they are apart) and check if we
// hit a block. For each block hit we subtract its hardness from the
// surplus strength left after crossing the distance between the two. If
// we reach a point where the surplus strength does not suffice we block
// the message.
// Unit vector from reference card (sender) to this one (receiver).
val dx = (card.owner.xCoord - reference.owner.xCoord) / distance
val dy = (card.owner.yCoord - reference.owner.yCoord) / distance
val dz = (card.owner.zCoord - reference.owner.zCoord) / distance
// Accumulated obstructions and number of samples.
var hardness = 0.0
val samples = Math.sqrt(gap).toInt
val world = card.owner.worldObj
val ox = reference.owner.xCoord - (if (reference.owner.xCoord < 0) 2 else 1)
val oy = reference.owner.yCoord - (if (reference.owner.yCoord < 0) 2 else 1)
val oz = reference.owner.zCoord - (if (reference.owner.zCoord < 0) 2 else 1)
for (i <- 0 until samples) {
val sample = 0.5 + world.rand.nextDouble() * gap
// Adding some jitter to avoid only tracking the perfect line between
// two modems when they are diagonal to each other.
val x = (ox + world.rand.nextInt(3) + 0.5 + dx * sample).toInt
val y = (oy + world.rand.nextInt(3) + 0.5 + dy * sample).toInt
val z = (oz + world.rand.nextInt(3) + 0.5 + dz * sample).toInt
Option(Block.blocksList(world.getBlockId(x, y, z))) match {
case Some(block) =>
hardness += block.blockHardness
case _ =>
}
}
// Normalize and scale obstructions:
hardness *= gap.toDouble / samples.toDouble
// Remaining signal strength.
val strength = reference.strength - gap
// See if we have enough power to overcome the obstructions.
strength > hardness
}
else true
}
}