blob: 0546dbb9ee3a7672886e1d01d941c88c345feff3 [file] [log] [blame] [raw]
#include "libcflat.h"
#include "desc.h"
#include "processor.h"
#include "asm/page.h"
#define smp_id() 0
#define true 1
#define false 0
static _Bool verbose = false;
typedef unsigned long pt_element_t;
static int cpuid_7_ebx;
static int cpuid_7_ecx;
static int invalid_mask;
#define PT_BASE_ADDR_MASK ((pt_element_t)((((pt_element_t)1 << 40) - 1) & PAGE_MASK))
#define PT_PSE_BASE_ADDR_MASK (PT_BASE_ADDR_MASK & ~(1ull << 21))
#define CR0_WP_MASK (1UL << 16)
#define CR4_SMEP_MASK (1UL << 20)
#define PFERR_PRESENT_MASK (1U << 0)
#define PFERR_WRITE_MASK (1U << 1)
#define PFERR_USER_MASK (1U << 2)
#define PFERR_RESERVED_MASK (1U << 3)
#define PFERR_FETCH_MASK (1U << 4)
#define PFERR_PK_MASK (1U << 5)
#define MSR_EFER 0xc0000080
#define EFER_NX_MASK (1ull << 11)
#define PT_INDEX(address, level) \
((address) >> (12 + ((level)-1) * 9)) & 511
/*
* page table access check tests
*/
enum {
AC_PTE_PRESENT_BIT,
AC_PTE_WRITABLE_BIT,
AC_PTE_USER_BIT,
AC_PTE_ACCESSED_BIT,
AC_PTE_DIRTY_BIT,
AC_PTE_NX_BIT,
AC_PTE_BIT51_BIT,
AC_PDE_PRESENT_BIT,
AC_PDE_WRITABLE_BIT,
AC_PDE_USER_BIT,
AC_PDE_ACCESSED_BIT,
AC_PDE_DIRTY_BIT,
AC_PDE_PSE_BIT,
AC_PDE_NX_BIT,
AC_PDE_BIT51_BIT,
AC_PDE_BIT13_BIT,
AC_PKU_AD_BIT,
AC_PKU_WD_BIT,
AC_PKU_PKEY_BIT,
AC_ACCESS_USER_BIT,
AC_ACCESS_WRITE_BIT,
AC_ACCESS_FETCH_BIT,
AC_ACCESS_TWICE_BIT,
AC_CPU_EFER_NX_BIT,
AC_CPU_CR0_WP_BIT,
AC_CPU_CR4_SMEP_BIT,
AC_CPU_CR4_PKE_BIT,
NR_AC_FLAGS
};
#define AC_PTE_PRESENT_MASK (1 << AC_PTE_PRESENT_BIT)
#define AC_PTE_WRITABLE_MASK (1 << AC_PTE_WRITABLE_BIT)
#define AC_PTE_USER_MASK (1 << AC_PTE_USER_BIT)
#define AC_PTE_ACCESSED_MASK (1 << AC_PTE_ACCESSED_BIT)
#define AC_PTE_DIRTY_MASK (1 << AC_PTE_DIRTY_BIT)
#define AC_PTE_NX_MASK (1 << AC_PTE_NX_BIT)
#define AC_PTE_BIT51_MASK (1 << AC_PTE_BIT51_BIT)
#define AC_PDE_PRESENT_MASK (1 << AC_PDE_PRESENT_BIT)
#define AC_PDE_WRITABLE_MASK (1 << AC_PDE_WRITABLE_BIT)
#define AC_PDE_USER_MASK (1 << AC_PDE_USER_BIT)
#define AC_PDE_ACCESSED_MASK (1 << AC_PDE_ACCESSED_BIT)
#define AC_PDE_DIRTY_MASK (1 << AC_PDE_DIRTY_BIT)
#define AC_PDE_PSE_MASK (1 << AC_PDE_PSE_BIT)
#define AC_PDE_NX_MASK (1 << AC_PDE_NX_BIT)
#define AC_PDE_BIT51_MASK (1 << AC_PDE_BIT51_BIT)
#define AC_PDE_BIT13_MASK (1 << AC_PDE_BIT13_BIT)
#define AC_PKU_AD_MASK (1 << AC_PKU_AD_BIT)
#define AC_PKU_WD_MASK (1 << AC_PKU_WD_BIT)
#define AC_PKU_PKEY_MASK (1 << AC_PKU_PKEY_BIT)
#define AC_ACCESS_USER_MASK (1 << AC_ACCESS_USER_BIT)
#define AC_ACCESS_WRITE_MASK (1 << AC_ACCESS_WRITE_BIT)
#define AC_ACCESS_FETCH_MASK (1 << AC_ACCESS_FETCH_BIT)
#define AC_ACCESS_TWICE_MASK (1 << AC_ACCESS_TWICE_BIT)
#define AC_CPU_EFER_NX_MASK (1 << AC_CPU_EFER_NX_BIT)
#define AC_CPU_CR0_WP_MASK (1 << AC_CPU_CR0_WP_BIT)
#define AC_CPU_CR4_SMEP_MASK (1 << AC_CPU_CR4_SMEP_BIT)
#define AC_CPU_CR4_PKE_MASK (1 << AC_CPU_CR4_PKE_BIT)
const char *ac_names[] = {
[AC_PTE_PRESENT_BIT] = "pte.p",
[AC_PTE_ACCESSED_BIT] = "pte.a",
[AC_PTE_WRITABLE_BIT] = "pte.rw",
[AC_PTE_USER_BIT] = "pte.user",
[AC_PTE_DIRTY_BIT] = "pte.d",
[AC_PTE_NX_BIT] = "pte.nx",
[AC_PTE_BIT51_BIT] = "pte.51",
[AC_PDE_PRESENT_BIT] = "pde.p",
[AC_PDE_ACCESSED_BIT] = "pde.a",
[AC_PDE_WRITABLE_BIT] = "pde.rw",
[AC_PDE_USER_BIT] = "pde.user",
[AC_PDE_DIRTY_BIT] = "pde.d",
[AC_PDE_PSE_BIT] = "pde.pse",
[AC_PDE_NX_BIT] = "pde.nx",
[AC_PDE_BIT51_BIT] = "pde.51",
[AC_PDE_BIT13_BIT] = "pde.13",
[AC_PKU_AD_BIT] = "pkru.ad",
[AC_PKU_WD_BIT] = "pkru.wd",
[AC_PKU_PKEY_BIT] = "pkey=1",
[AC_ACCESS_WRITE_BIT] = "write",
[AC_ACCESS_USER_BIT] = "user",
[AC_ACCESS_FETCH_BIT] = "fetch",
[AC_ACCESS_TWICE_BIT] = "twice",
[AC_CPU_EFER_NX_BIT] = "efer.nx",
[AC_CPU_CR0_WP_BIT] = "cr0.wp",
[AC_CPU_CR4_SMEP_BIT] = "cr4.smep",
[AC_CPU_CR4_PKE_BIT] = "cr4.pke",
};
static inline void *va(pt_element_t phys)
{
return (void *)phys;
}
typedef struct {
pt_element_t pt_pool;
unsigned pt_pool_size;
unsigned pt_pool_current;
} ac_pool_t;
typedef struct {
unsigned flags;
void *virt;
pt_element_t phys;
pt_element_t *ptep;
pt_element_t expected_pte;
pt_element_t *pdep;
pt_element_t expected_pde;
pt_element_t ignore_pde;
int expected_fault;
unsigned expected_error;
} ac_test_t;
typedef struct {
unsigned short limit;
unsigned long linear_addr;
} __attribute__((packed)) descriptor_table_t;
static void ac_test_show(ac_test_t *at);
int write_cr4_checking(unsigned long val)
{
asm volatile(ASM_TRY("1f")
"mov %0,%%cr4\n\t"
"1:": : "r" (val));
return exception_vector();
}
void set_cr0_wp(int wp)
{
unsigned long cr0 = read_cr0();
unsigned long old_cr0 = cr0;
cr0 &= ~CR0_WP_MASK;
if (wp)
cr0 |= CR0_WP_MASK;
if (old_cr0 != cr0)
write_cr0(cr0);
}
void set_cr4_smep(int smep)
{
unsigned long cr4 = read_cr4();
unsigned long old_cr4 = cr4;
extern u64 ptl2[];
cr4 &= ~CR4_SMEP_MASK;
if (smep)
cr4 |= CR4_SMEP_MASK;
if (old_cr4 == cr4)
return;
if (smep)
ptl2[2] &= ~PT_USER_MASK;
write_cr4(cr4);
if (!smep)
ptl2[2] |= PT_USER_MASK;
}
void set_cr4_pke(int pke)
{
unsigned long cr4 = read_cr4();
unsigned long old_cr4 = cr4;
cr4 &= ~X86_CR4_PKE;
if (pke)
cr4 |= X86_CR4_PKE;
if (old_cr4 == cr4)
return;
/* Check that protection keys do not affect accesses when CR4.PKE=0. */
if ((read_cr4() & X86_CR4_PKE) && !pke) {
write_pkru(0xfffffffc);
}
write_cr4(cr4);
}
void set_efer_nx(int nx)
{
unsigned long long efer = rdmsr(MSR_EFER);
unsigned long long old_efer = efer;
efer &= ~EFER_NX_MASK;
if (nx)
efer |= EFER_NX_MASK;
if (old_efer != efer)
wrmsr(MSR_EFER, efer);
}
static void ac_env_int(ac_pool_t *pool)
{
extern char page_fault, kernel_entry;
set_idt_entry(14, &page_fault, 0);
set_idt_entry(0x20, &kernel_entry, 3);
pool->pt_pool = 33 * 1024 * 1024;
pool->pt_pool_size = 120 * 1024 * 1024 - pool->pt_pool;
pool->pt_pool_current = 0;
}
void ac_test_init(ac_test_t *at, void *virt)
{
wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NX_MASK);
set_cr0_wp(1);
at->flags = 0;
at->virt = virt;
at->phys = 32 * 1024 * 1024;
}
int ac_test_bump_one(ac_test_t *at)
{
at->flags = ((at->flags | invalid_mask) + 1) & ~invalid_mask;
return at->flags < (1 << NR_AC_FLAGS);
}
#define F(x) ((flags & x##_MASK) != 0)
_Bool ac_test_legal(ac_test_t *at)
{
int flags = at->flags;
if (F(AC_ACCESS_FETCH) && F(AC_ACCESS_WRITE))
return false;
/*
* Since we convert current page to kernel page when cr4.smep=1,
* we can't switch to user mode.
*/
if (F(AC_ACCESS_USER) && F(AC_CPU_CR4_SMEP))
return false;
/*
* Only test protection key faults if CR4.PKE=1.
*/
if (!F(AC_CPU_CR4_PKE) &&
(F(AC_PKU_AD) || F(AC_PKU_WD))) {
return false;
}
/*
* pde.bit13 checks handling of reserved bits in largepage PDEs. It is
* meaningless if there is a PTE.
*/
if (!F(AC_PDE_PSE) && F(AC_PDE_BIT13))
return false;
return true;
}
int ac_test_bump(ac_test_t *at)
{
int ret;
ret = ac_test_bump_one(at);
while (ret && !ac_test_legal(at))
ret = ac_test_bump_one(at);
return ret;
}
pt_element_t ac_test_alloc_pt(ac_pool_t *pool)
{
pt_element_t ret = pool->pt_pool + pool->pt_pool_current;
pool->pt_pool_current += PAGE_SIZE;
return ret;
}
_Bool ac_test_enough_room(ac_pool_t *pool)
{
return pool->pt_pool_current + 4 * PAGE_SIZE <= pool->pt_pool_size;
}
void ac_test_reset_pt_pool(ac_pool_t *pool)
{
pool->pt_pool_current = 0;
}
pt_element_t ac_test_permissions(ac_test_t *at, unsigned flags, bool writable,
bool user, bool executable)
{
bool kwritable = !F(AC_CPU_CR0_WP) && !F(AC_ACCESS_USER);
pt_element_t expected = 0;
if (F(AC_ACCESS_USER) && !user)
at->expected_fault = 1;
if (F(AC_ACCESS_WRITE) && !writable && !kwritable)
at->expected_fault = 1;
if (F(AC_ACCESS_FETCH) && !executable)
at->expected_fault = 1;
if (F(AC_ACCESS_FETCH) && user && F(AC_CPU_CR4_SMEP))
at->expected_fault = 1;
if (user && !F(AC_ACCESS_FETCH) && F(AC_PKU_PKEY) && F(AC_CPU_CR4_PKE)) {
if (F(AC_PKU_AD)) {
at->expected_fault = 1;
at->expected_error |= PFERR_PK_MASK;
} else if (F(AC_ACCESS_WRITE) && F(AC_PKU_WD) && !kwritable) {
at->expected_fault = 1;
at->expected_error |= PFERR_PK_MASK;
}
}
if (!at->expected_fault) {
expected |= PT_ACCESSED_MASK;
if (F(AC_ACCESS_WRITE))
expected |= PT_DIRTY_MASK;
}
return expected;
}
void ac_emulate_access(ac_test_t *at, unsigned flags)
{
bool pde_valid, pte_valid;
bool user, writable, executable;
if (F(AC_ACCESS_USER))
at->expected_error |= PFERR_USER_MASK;
if (F(AC_ACCESS_WRITE))
at->expected_error |= PFERR_WRITE_MASK;
if (F(AC_ACCESS_FETCH))
at->expected_error |= PFERR_FETCH_MASK;
if (!F(AC_PDE_ACCESSED))
at->ignore_pde = PT_ACCESSED_MASK;
pde_valid = F(AC_PDE_PRESENT)
&& !F(AC_PDE_BIT51) && !F(AC_PDE_BIT13)
&& !(F(AC_PDE_NX) && !F(AC_CPU_EFER_NX));
if (!pde_valid) {
at->expected_fault = 1;
if (F(AC_PDE_PRESENT)) {
at->expected_error |= PFERR_RESERVED_MASK;
} else {
at->expected_error &= ~PFERR_PRESENT_MASK;
}
goto fault;
}
writable = F(AC_PDE_WRITABLE);
user = F(AC_PDE_USER);
executable = !F(AC_PDE_NX);
if (F(AC_PDE_PSE)) {
at->expected_pde |= ac_test_permissions(at, flags, writable, user,
executable);
goto no_pte;
}
at->expected_pde |= PT_ACCESSED_MASK;
pte_valid = F(AC_PTE_PRESENT)
&& !F(AC_PTE_BIT51)
&& !(F(AC_PTE_NX) && !F(AC_CPU_EFER_NX));
if (!pte_valid) {
at->expected_fault = 1;
if (F(AC_PTE_PRESENT)) {
at->expected_error |= PFERR_RESERVED_MASK;
} else {
at->expected_error &= ~PFERR_PRESENT_MASK;
}
goto fault;
}
writable &= F(AC_PTE_WRITABLE);
user &= F(AC_PTE_USER);
executable &= !F(AC_PTE_NX);
at->expected_pte |= ac_test_permissions(at, flags, writable, user,
executable);
no_pte:
fault:
if (!at->expected_fault)
at->ignore_pde = 0;
if (!F(AC_CPU_EFER_NX) && !F(AC_CPU_CR4_SMEP))
at->expected_error &= ~PFERR_FETCH_MASK;
}
void ac_set_expected_status(ac_test_t *at)
{
invlpg(at->virt);
if (at->ptep)
at->expected_pte = *at->ptep;
at->expected_pde = *at->pdep;
at->ignore_pde = 0;
at->expected_fault = 0;
at->expected_error = PFERR_PRESENT_MASK;
if (at->flags & AC_ACCESS_TWICE_MASK) {
ac_emulate_access(at, at->flags & ~AC_ACCESS_WRITE_MASK
& ~AC_ACCESS_FETCH_MASK & ~AC_ACCESS_USER_MASK);
at->expected_fault = 0;
at->expected_error = PFERR_PRESENT_MASK;
at->ignore_pde = 0;
}
ac_emulate_access(at, at->flags);
}
void __ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool, u64 pd_page,
u64 pt_page)
{
unsigned long root = read_cr3();
int flags = at->flags;
if (!ac_test_enough_room(pool))
ac_test_reset_pt_pool(pool);
at->ptep = 0;
for (int i = 4; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
unsigned index = PT_INDEX((unsigned long)at->virt, i);
pt_element_t pte = 0;
switch (i) {
case 4:
case 3:
pte = pd_page ? pd_page : ac_test_alloc_pt(pool);
pte |= PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
break;
case 2:
if (!F(AC_PDE_PSE)) {
pte = pt_page ? pt_page : ac_test_alloc_pt(pool);
/* The protection key is ignored on non-leaf entries. */
if (F(AC_PKU_PKEY))
pte |= 2ull << 59;
} else {
pte = at->phys & PT_PSE_BASE_ADDR_MASK;
pte |= PT_PAGE_SIZE_MASK;
if (F(AC_PKU_PKEY))
pte |= 1ull << 59;
}
if (F(AC_PDE_PRESENT))
pte |= PT_PRESENT_MASK;
if (F(AC_PDE_WRITABLE))
pte |= PT_WRITABLE_MASK;
if (F(AC_PDE_USER))
pte |= PT_USER_MASK;
if (F(AC_PDE_ACCESSED))
pte |= PT_ACCESSED_MASK;
if (F(AC_PDE_DIRTY))
pte |= PT_DIRTY_MASK;
if (F(AC_PDE_NX))
pte |= PT64_NX_MASK;
if (F(AC_PDE_BIT51))
pte |= 1ull << 51;
if (F(AC_PDE_BIT13))
pte |= 1ull << 13;
at->pdep = &vroot[index];
break;
case 1:
pte = at->phys & PT_BASE_ADDR_MASK;
if (F(AC_PKU_PKEY))
pte |= 1ull << 59;
if (F(AC_PTE_PRESENT))
pte |= PT_PRESENT_MASK;
if (F(AC_PTE_WRITABLE))
pte |= PT_WRITABLE_MASK;
if (F(AC_PTE_USER))
pte |= PT_USER_MASK;
if (F(AC_PTE_ACCESSED))
pte |= PT_ACCESSED_MASK;
if (F(AC_PTE_DIRTY))
pte |= PT_DIRTY_MASK;
if (F(AC_PTE_NX))
pte |= PT64_NX_MASK;
if (F(AC_PTE_BIT51))
pte |= 1ull << 51;
at->ptep = &vroot[index];
break;
}
vroot[index] = pte;
root = vroot[index];
}
ac_set_expected_status(at);
}
static void ac_test_setup_pte(ac_test_t *at, ac_pool_t *pool)
{
__ac_setup_specific_pages(at, pool, 0, 0);
}
static void ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool,
u64 pd_page, u64 pt_page)
{
return __ac_setup_specific_pages(at, pool, pd_page, pt_page);
}
static void dump_mapping(ac_test_t *at)
{
unsigned long root = read_cr3();
int flags = at->flags;
int i;
printf("Dump mapping: address: %p\n", at->virt);
for (i = 4; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
unsigned index = PT_INDEX((unsigned long)at->virt, i);
pt_element_t pte = vroot[index];
printf("------L%d: %lx\n", i, pte);
root = vroot[index];
}
}
static void ac_test_check(ac_test_t *at, _Bool *success_ret, _Bool cond,
const char *fmt, ...)
{
va_list ap;
char buf[500];
if (!*success_ret) {
return;
}
if (!cond) {
return;
}
*success_ret = false;
if (!verbose) {
puts("\n");
ac_test_show(at);
}
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
printf("FAIL: %s\n", buf);
dump_mapping(at);
}
static int pt_match(pt_element_t pte1, pt_element_t pte2, pt_element_t ignore)
{
pte1 &= ~ignore;
pte2 &= ~ignore;
return pte1 == pte2;
}
int ac_test_do_access(ac_test_t *at)
{
static unsigned unique = 42;
int fault = 0;
unsigned e;
static unsigned char user_stack[4096];
unsigned long rsp;
_Bool success = true;
int flags = at->flags;
++unique;
if (!(unique & 65535)) {
puts(".");
}
*((unsigned char *)at->phys) = 0xc3; /* ret */
unsigned r = unique;
set_cr0_wp(F(AC_CPU_CR0_WP));
set_efer_nx(F(AC_CPU_EFER_NX));
set_cr4_pke(F(AC_CPU_CR4_PKE));
if (F(AC_CPU_CR4_PKE)) {
/* WD2=AD2=1, WD1=F(AC_PKU_WD), AD1=F(AC_PKU_AD) */
write_pkru(0x30 | (F(AC_PKU_WD) ? 8 : 0) |
(F(AC_PKU_AD) ? 4 : 0));
}
set_cr4_smep(F(AC_CPU_CR4_SMEP));
if (F(AC_ACCESS_TWICE)) {
asm volatile (
"mov $fixed2, %%rsi \n\t"
"mov (%[addr]), %[reg] \n\t"
"fixed2:"
: [reg]"=r"(r), [fault]"=a"(fault), "=b"(e)
: [addr]"r"(at->virt)
: "rsi"
);
fault = 0;
}
asm volatile ("mov $fixed1, %%rsi \n\t"
"mov %%rsp, %%rdx \n\t"
"cmp $0, %[user] \n\t"
"jz do_access \n\t"
"push %%rax; mov %[user_ds], %%ax; mov %%ax, %%ds; pop %%rax \n\t"
"pushq %[user_ds] \n\t"
"pushq %[user_stack_top] \n\t"
"pushfq \n\t"
"pushq %[user_cs] \n\t"
"pushq $do_access \n\t"
"iretq \n"
"do_access: \n\t"
"cmp $0, %[fetch] \n\t"
"jnz 2f \n\t"
"cmp $0, %[write] \n\t"
"jnz 1f \n\t"
"mov (%[addr]), %[reg] \n\t"
"jmp done \n\t"
"1: mov %[reg], (%[addr]) \n\t"
"jmp done \n\t"
"2: call *%[addr] \n\t"
"done: \n"
"fixed1: \n"
"int %[kernel_entry_vector] \n\t"
"back_to_kernel:"
: [reg]"+r"(r), "+a"(fault), "=b"(e), "=&d"(rsp)
: [addr]"r"(at->virt),
[write]"r"(F(AC_ACCESS_WRITE)),
[user]"r"(F(AC_ACCESS_USER)),
[fetch]"r"(F(AC_ACCESS_FETCH)),
[user_ds]"i"(USER_DS),
[user_cs]"i"(USER_CS),
[user_stack_top]"r"(user_stack + sizeof user_stack),
[kernel_entry_vector]"i"(0x20)
: "rsi");
asm volatile (".section .text.pf \n\t"
"page_fault: \n\t"
"pop %rbx \n\t"
"mov %rsi, (%rsp) \n\t"
"movl $1, %eax \n\t"
"iretq \n\t"
".section .text");
asm volatile (".section .text.entry \n\t"
"kernel_entry: \n\t"
"mov %rdx, %rsp \n\t"
"jmp back_to_kernel \n\t"
".section .text");
ac_test_check(at, &success, fault && !at->expected_fault,
"unexpected fault");
ac_test_check(at, &success, !fault && at->expected_fault,
"unexpected access");
ac_test_check(at, &success, fault && e != at->expected_error,
"error code %x expected %x", e, at->expected_error);
ac_test_check(at, &success, at->ptep && *at->ptep != at->expected_pte,
"pte %x expected %x", *at->ptep, at->expected_pte);
ac_test_check(at, &success,
!pt_match(*at->pdep, at->expected_pde, at->ignore_pde),
"pde %x expected %x", *at->pdep, at->expected_pde);
if (success && verbose) {
if (at->expected_fault) {
printf("PASS (%x)\n", at->expected_error);
} else {
printf("PASS\n");
}
}
return success;
}
static void ac_test_show(ac_test_t *at)
{
char line[5000];
*line = 0;
strcat(line, "test");
for (int i = 0; i < NR_AC_FLAGS; ++i)
if (at->flags & (1 << i)) {
strcat(line, " ");
strcat(line, ac_names[i]);
}
strcat(line, ": ");
printf("%s", line);
}
/*
* This test case is used to triger the bug which is fixed by
* commit e09e90a5 in the kvm tree
*/
static int corrupt_hugepage_triger(ac_pool_t *pool)
{
ac_test_t at1, at2;
ac_test_init(&at1, (void *)(0x123400000000));
ac_test_init(&at2, (void *)(0x666600000000));
at2.flags = AC_CPU_CR0_WP_MASK | AC_PDE_PSE_MASK | AC_PDE_PRESENT_MASK;
ac_test_setup_pte(&at2, pool);
if (!ac_test_do_access(&at2))
goto err;
at1.flags = at2.flags | AC_PDE_WRITABLE_MASK;
ac_test_setup_pte(&at1, pool);
if (!ac_test_do_access(&at1))
goto err;
at1.flags |= AC_ACCESS_WRITE_MASK;
ac_set_expected_status(&at1);
if (!ac_test_do_access(&at1))
goto err;
at2.flags |= AC_ACCESS_WRITE_MASK;
ac_set_expected_status(&at2);
if (!ac_test_do_access(&at2))
goto err;
return 1;
err:
printf("corrupt_hugepage_triger test fail\n");
return 0;
}
/*
* This test case is used to triger the bug which is fixed by
* commit 3ddf6c06e13e in the kvm tree
*/
static int check_pfec_on_prefetch_pte(ac_pool_t *pool)
{
ac_test_t at1, at2;
ac_test_init(&at1, (void *)(0x123406001000));
ac_test_init(&at2, (void *)(0x123406003000));
at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK;
ac_setup_specific_pages(&at1, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
at2.flags = at1.flags | AC_PTE_NX_MASK;
ac_setup_specific_pages(&at2, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
if (!ac_test_do_access(&at1)) {
printf("%s: prepare fail\n", __FUNCTION__);
goto err;
}
if (!ac_test_do_access(&at2)) {
printf("%s: check PFEC on prefetch pte path fail\n",
__FUNCTION__);
goto err;
}
return 1;
err:
return 0;
}
/*
* If the write-fault access is from supervisor and CR0.WP is not set on the
* vcpu, kvm will fix it by adjusting pte access - it sets the W bit on pte
* and clears U bit. This is the chance that kvm can change pte access from
* readonly to writable.
*
* Unfortunately, the pte access is the access of 'direct' shadow page table,
* means direct sp.role.access = pte_access, then we will create a writable
* spte entry on the readonly shadow page table. It will cause Dirty bit is
* not tracked when two guest ptes point to the same large page. Note, it
* does not have other impact except Dirty bit since cr0.wp is encoded into
* sp.role.
*
* Note: to trigger this bug, hugepage should be disabled on host.
*/
static int check_large_pte_dirty_for_nowp(ac_pool_t *pool)
{
ac_test_t at1, at2;
ac_test_init(&at1, (void *)(0x123403000000));
ac_test_init(&at2, (void *)(0x666606000000));
at2.flags = AC_PDE_PRESENT_MASK | AC_PDE_PSE_MASK;
ac_test_setup_pte(&at2, pool);
if (!ac_test_do_access(&at2)) {
printf("%s: read on the first mapping fail.\n", __FUNCTION__);
goto err;
}
at1.flags = at2.flags | AC_ACCESS_WRITE_MASK;
ac_test_setup_pte(&at1, pool);
if (!ac_test_do_access(&at1)) {
printf("%s: write on the second mapping fail.\n", __FUNCTION__);
goto err;
}
at2.flags |= AC_ACCESS_WRITE_MASK;
ac_set_expected_status(&at2);
if (!ac_test_do_access(&at2)) {
printf("%s: write on the first mapping fail.\n", __FUNCTION__);
goto err;
}
return 1;
err:
return 0;
}
static int check_smep_andnot_wp(ac_pool_t *pool)
{
ac_test_t at1;
int err_prepare_andnot_wp, err_smep_andnot_wp;
if (!(cpuid_7_ebx & (1 << 7))) {
return 1;
}
ac_test_init(&at1, (void *)(0x123406001000));
at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK |
AC_PDE_USER_MASK | AC_PTE_USER_MASK |
AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK |
AC_CPU_CR4_SMEP_MASK |
AC_CPU_CR0_WP_MASK |
AC_ACCESS_WRITE_MASK;
ac_test_setup_pte(&at1, pool);
/*
* Here we write the ro user page when
* cr0.wp=0, then we execute it and SMEP
* fault should happen.
*/
err_prepare_andnot_wp = ac_test_do_access(&at1);
if (!err_prepare_andnot_wp) {
printf("%s: SMEP prepare fail\n", __FUNCTION__);
goto clean_up;
}
at1.flags &= ~AC_ACCESS_WRITE_MASK;
at1.flags |= AC_ACCESS_FETCH_MASK;
ac_set_expected_status(&at1);
err_smep_andnot_wp = ac_test_do_access(&at1);
clean_up:
set_cr4_smep(0);
if (!err_prepare_andnot_wp)
goto err;
if (!err_smep_andnot_wp) {
printf("%s: check SMEP without wp fail\n", __FUNCTION__);
goto err;
}
return 1;
err:
return 0;
}
int ac_test_exec(ac_test_t *at, ac_pool_t *pool)
{
int r;
if (verbose) {
ac_test_show(at);
}
ac_test_setup_pte(at, pool);
r = ac_test_do_access(at);
return r;
}
typedef int (*ac_test_fn)(ac_pool_t *pool);
const ac_test_fn ac_test_cases[] =
{
corrupt_hugepage_triger,
check_pfec_on_prefetch_pte,
check_large_pte_dirty_for_nowp,
check_smep_andnot_wp
};
int ac_test_run(void)
{
ac_test_t at;
ac_pool_t pool;
int i, tests, successes;
printf("run\n");
tests = successes = 0;
if (cpuid_7_ecx & (1 << 3)) {
set_cr4_pke(1);
set_cr4_pke(0);
/* Now PKRU = 0xFFFFFFFF. */
} else {
unsigned long cr4 = read_cr4();
tests++;
if (write_cr4_checking(cr4 | X86_CR4_PKE) == GP_VECTOR) {
successes++;
invalid_mask |= AC_PKU_AD_MASK;
invalid_mask |= AC_PKU_WD_MASK;
invalid_mask |= AC_PKU_PKEY_MASK;
invalid_mask |= AC_CPU_CR4_PKE_MASK;
printf("CR4.PKE not available, disabling PKE tests\n");
} else {
printf("Set PKE in CR4 - expect #GP: FAIL!\n");
set_cr4_pke(0);
}
}
if (!(cpuid_7_ebx & (1 << 7))) {
unsigned long cr4 = read_cr4();
tests++;
if (write_cr4_checking(cr4 | CR4_SMEP_MASK) == GP_VECTOR) {
successes++;
invalid_mask |= AC_CPU_CR4_SMEP_MASK;
printf("CR4.SMEP not available, disabling SMEP tests\n");
} else {
printf("Set SMEP in CR4 - expect #GP: FAIL!\n");
set_cr4_smep(0);
}
}
ac_env_int(&pool);
ac_test_init(&at, (void *)(0x123400000000 + 16 * smp_id()));
do {
++tests;
successes += ac_test_exec(&at, &pool);
} while (ac_test_bump(&at));
for (i = 0; i < ARRAY_SIZE(ac_test_cases); i++) {
++tests;
successes += ac_test_cases[i](&pool);
}
printf("\n%d tests, %d failures\n", tests, tests - successes);
return successes == tests;
}
int main()
{
int r;
setup_idt();
cpuid_7_ebx = cpuid(7).b;
cpuid_7_ecx = cpuid(7).c;
printf("starting test\n\n");
r = ac_test_run();
return r ? 0 : 1;
}