
SIMH AltairZ80 1 of 63

AltairZ80 Simulator Usage
26-May-2014

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code for the AltairZ80 part published in 2002-2014, written by Peter Schorn

Copyright (c) 2002-2014, Peter Schorn

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL PETER SCHORN BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Peter Schorn shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from Peter Schorn.

Based on work by Charles E. Owen (c) 1997. Additional device support by Howard M.
Harte, Ernie Price and Mike Douglas.

SIMH AltairZ80 2 of 63

1	 Simulator Files .. 4	
2	 Revision History .. 6	
3	 Background ... 7	
4	 Hardware .. 7	

4.1	 CPU ... 8	
4.1.1	 Registers for the 8080 and Z80 ... 9	
4.1.2	 Registers for the 8086 ... 10	
4.1.3	 Registers for the MC68000 ... 11	

4.2	 The Serial I/O Card (2SIO) .. 12	
4.3	 The SIMH pseudo device ... 14	
4.4	 The 88-DISK controller .. 15	
4.5	 The 88-HDSK controller ... 15	
4.6	 The simulated hard disk ... 16	
4.7	 The simulated network ... 17	

5	 Sample Software .. 18	
5.1	 CP/M Version 2.2 ... 18	
5.2	 CP/M Version 3 with banked memory .. 21	
5.3	 MP/M II with banked memory .. 23	
5.4	 CP/NET .. 26	
5.5	 CPNOS .. 27	
5.6	 CP/M application software ... 28	
5.7	 MITS Disk Extended BASIC Version 4.1 ... 30	
5.8	 Altair DOS Version 1.0 ... 31	
5.9	 Altair Basic 3.2 (4k) .. 31	
5.10	 Altair Basic 4.0 (4k) .. 32	
5.11	 Altair 8k Basic .. 32	
5.12	 Altair Basic 4.0 ... 33	
5.13	 Altair Disk Extended Basic Version 300-5-C .. 33	
5.14	 Altair Disk Extended Basic Version 5.0 .. 34	
5.15	 Altair Hard Disk Basic 300-5-C .. 34	
5.16	 Altair programming languages VTL-2 and MINOL ... 35	
5.17	 UCSD Pascal II.0 ... 35	
5.18	 CP/M-68K .. 36	

6	 Special simulator features .. 36	
6.1	 Memory access breakpoints (8080/Z80 only) .. 36	
6.2	 Instruction breakpoints (8080/Z80/8086) ... 36	

7	 Brief summary of all major changes to the original Altair simulator 37	
8	 Appendix: Python script for converting MBL files to plain binary files 37	
9	 Appendix: How to bring up UCSD Pascal II.0 on SIMH ... 39	
10	 Vector Graphic, Inc. Simulation .. 47	

10.1	 Overview .. 47	
10.2	 48K Vector MZ ... 48	
10.3	 56K Vector MZ ... 49	
10.4	 56K Vector with HD-FD Controller ... 49	
10.5	 Notes on Simulated Hardware ... 50	
10.6	 Notes on the Vector Graphic Disk Image (VGI) File Format 50	

SIMH AltairZ80 3 of 63

11	 IMSAI 8080 Simulation ... 51	
11.1	 Overview .. 51	
11.2	 IMSAI 8080 with FIF Disk Controller .. 51	

12	 North Star Horizon Simulation .. 52	
12.1	 Overview .. 52	
12.2	 North Star Horizon with MDS-AD Disk Controller .. 52	

13	 Compupro 8-16 Simulation ... 53	
13.1	 Overview .. 53	
13.2	 DISK1A High Performance Floppy Disk Controller .. 53	

13.2.1	 DISK1A Controller Parameters .. 53	
13.2.2	 DISK1A Controller Limitations ... 54	

13.3	 DISK2 Compupro Hard Disk Controller ... 54	
13.3.1	 DISK2 Controller Parameters ... 54	
13.3.2	 DISK2 Controller Configuration Registers .. 55	

13.4	 SELCHAN Compupro Selector Channel Controller ... 55	
13.4.1	 DISK2 Controller Parameters ... 55	

13.5	 DISK3 Viasyn ST-506 Hard Disk Controller ... 55	
13.5.1	 DISK3 Controller Parameters ... 55	
13.5.2	 DISK3 Controller Configuration Registers .. 56	
13.5.3	 DISK3 Controller Limitations .. 56	

14	 Cromemco 4/16/64FDC and CCS-2422 FDC Simulation ... 57	
14.1	 Overview .. 57	

14.1.1	 CROMFDC Controller Parameters ... 57	
14.1.2	 CROMFDC Controller Configuration Registers .. 57	
14.1.3	 CROMFDC Controller Limitations .. 58	

15	 Advanced Digital Corporation Super-Six Simulation ... 59	
15.1	 Overview .. 59	

15.1.1	 ADCS6 SBC Parameters... 59	
15.1.2	 ADCS6 SBC Configuration Registers .. 59	
15.1.3	 ADCS6 SBC Limitations .. 60	

16	 N8VEM Single Board Computer Simulation ... 61	
16.1	 Overview .. 61	

16.1.1	 N8VEM SBC Parameters ... 61	
16.1.2	 N8VEM SBC Configuration Registers ... 61	
16.1.3	 N8VEM SBC Limitations ... 62	

17	 ImageDisk (IMD) Disk Image Support in SIMH ... 63	
17.1	 Overview .. 63	
17.2	 References ... 63	

18	 CP/M-68K Simulation .. 63	

SIMH AltairZ80 4 of 63

This memorandum documents the Altair 8800 Simulator.

1 Simulator Files
scp.h

sim_console.h

sim_defs.h

sim_fio.h

sim_rev.h

sim_sock.h

sim_timer.h

sim_tmxr.h

sim_serial.h

sim_tape.c

sim_disk.c

sim_ether.c

scp.c

sim_console.c

sim_fio.c

sim_sock.c

sim_timer.c

sim_tmxr.c

sim_serial.c

sim_tape.c

sim_disk.c

sim_ether.c

AltairZ80/altairz80_defs.h

altairz80_cpu_nommu.c

altairz80_cpu.c

altairz80_dsk.c

altairz80_hdsk.c

altairz80_mhdsk.c (MITS/Pertec 88-HDSK hard disk support by Mike Douglas)

altairz80_net.c

altairz80_sio.c

altairz80_sys.c

flashwriter2.c (Vector Graphic, Inc. FlashWriter II support by Howard M. Harte)

i8272.c (Generic Intel 8272 Disk Controller by Howard M. Harte)

SIMH AltairZ80 5 of 63

i8272.h (Generic Intel 8272 Disk Controller by Howard M. Harte)

mfdc.c (Micropolis FDC support by Howard M. Harte)

mfdc.h (Micropolis FDC support by Howard M. Harte)

n8vem.c (N8VEM Single-Board Computer I/O module by Howard M. Harte)

s100_f64fdc.c (Cromemco 4FDC/16FDC/64FDC Floppy Controller by Howard M. Harte)

s100_adcs6.c (Advanced Digital Corporation (ADC) Super-Six CPU Board by Howard M.
Harte)

s100_disk1a.c (CompuPro DISK1A Floppy Controller by Howard M. Harte)

s100_disk2.c (CompuPro DISK2 Hard Disk Controller by Howard M. Harte)

s100_disk3.c (CompuPro DISK3 Hard Disk Controller by Howard M. Harte)

s100_fif.c (IMSAI FIF Disk Controller by Ernie Price)

s100_hdc1001.c (Advanced Digital Corporation (ADC) HDC-1001 Hard Disk Controller by
Howard M. Harte)

s100_mdriveh.c (CompuPro M-DRIVE/H Controller by Howard M. Harte)

s100_mdsad.c (North Star MDS-AD disk controller by Howard M. Harte)

s100_scp300f.c (Seattle Computer Products SCP300F Support Board module by Howard
M. Harte)

s100_selchan.c (CompuPro Selector Channel module by Howard M. Harte)

s100_ss1.c (CompuPro System Support 1 module by Howard M. Harte)

sim_imd.c (ImageDisk Disk Image File access module by Howard M. Harte)

sim_imd.h (ImageDisk Disk Image File access module by Howard M. Harte)

vfdhd.c (Micropolis FDC support by Howard M. Harte)

vfdhd.h (Micropolis FDC support by Howard M. Harte)

wd179x.h (WD179X support by Howard M. Harte)

wd179x.c (WD179X support by Howard M. Harte)

insns.h (8086 Disassembler by Simon Tatham and Julian Hall)

nasm.h (8086 Disassembler by Simon Tatham and Julian Hall)

disasm.c (8086 Disassembler by Simon Tatham and Julian Hall)

insnsd.c (8086 Disassembler by Simon Tatham and Julian Hall)

i86.h (8086 CPU by Jim Hudgens)

i86_decode.c (8086 CPU by Jim Hudgens)

i86_ops.c (8086 CPU by Jim Hudgens)

i86_prim_ops.c (8086 CPU by Jim Hudgens)

m68k.h (Motorola M68000 CPU by Karl Stenerud)

m68kconf.h (Motorola M68000 CPU by Karl Stenerud)

m68ksim.c (CPU driver or CP/M-68K simulation, based on work by David W. Schultz)

m68ksim.h (CPU driver or CP/M-68K simulation, based on work by David W. Schultz)

m68kcpu.c (Motorola MC68000 CPU by Karl Stenerud)

SIMH AltairZ80 6 of 63

m68kcpu.h (Motorola MC68000 CPU by Karl Stenerud)

m68kdasm.c (Motorola MC68000 CPU by Karl Stenerud, disassembler)

m68kopac.c (Motorola MC68000 CPU by Karl Stenerud)

m68kopdm.c (Motorola MC68000 CPU by Karl Stenerud)

m68kopnz.c (Motorola MC68000 CPU by Karl Stenerud)

m68kops.c (Motorola MC68000 CPU by Karl Stenerud)

m68kops.h (Motorola MC68000 CPU by Karl Stenerud)

2 Revision History
– 24-May-2014, Peter Schorn (added support for the Altair Mini-Disk contributed by Mike

Douglas)

– 6-May-2014, Peter Schorn (added Motorola MC68000 CPU, updated HDSK and added a
driver for CP/M-68K simulation)

– 21-Apr-2014, Peter Schorn (added debug flags for the MHDSK device and support for the
NEXT command)

– 29-Mar-2014, Peter Schorn (added support for the MITS/Pertec 88-HDSK hard disk
contributed by Mike Douglas)

– 15-Apr-2013, Peter Schorn (added correct cycle count timing for 8080 CPU, improved
.IMD file processing, SIO ‘C’ switch was renamed to ‘N’)

– 24-Aug-2012, Peter Schorn (added capability to HDSK device for .IMD disk processing)

– 01-Aug-2011, Peter Schorn (added some explanation to Altair Basic)

– 29-Sep-2009, Peter Schorn (added debug flags to SIO, PTR and PTP)

– 18-Apr-2009, Peter Schorn (fixed some errata in the manual found by Kim Sparre and
added additional disk layouts to HDSK)

– 17-Aug-2008, Peter Schorn (moved VERBOSE/QUIET for DSK and HDSK to debug flags)

– 03-Jul-2008, Howard M. Harte (added support for hardware modules from Cromemco,
Advanced Digital Corporation, Seattle Computer Products and N8VEM)

– 29-Feb-2008, Howard M. Harte / Peter Schorn (added support for additional S100 and
CompuPro hardware modules, added 8086 CPU)

– 29-Dec-2007, Howard M. Harte / Peter Schorn (added support for Vector Graphic
Flashwriter II, Micropolis FDC, ImageDisk disk image File, IMSAI FIF disk controller, North
Star MDS-AD disk controller)

– 21-Apr-2007, Peter Schorn (added documentation for UCSD Pascal II.0)

– 14-Apr-2007, Peter Schorn (added documentation for Howard M. Harte’s hard disk
extensions)

– 05-Jan-2007, Peter Schorn (added networking capability, included CP/NET and CPNOS)

– 26-Nov-2006, Peter Schorn (SIO can now be attached to a file, SIO rewritten for better
efficiency)

– 15-Oct-2006, Peter Schorn (updated CP/M 2 operating system and application software
description)

SIMH AltairZ80 7 of 63

– 17-Sep-2006, Peter Schorn (added Altair Basic 5.0 to the sample software, corrected
TTY/ANSI description)

– 21-Aug-2006, Peter Schorn (added MINOL and VTL-2 software, retyping courtesy of
Emmanuel ROCHE, fixed a bug in memory breakpoints and added a create (“C”) switch to
the attach command)

– 24-Jan-2006, Peter Schorn (transcribed documentation to Word / PDF format)

– 05-Apr-2005, Peter Schorn (removed bogus t-state stepping support)

– 24-Jul-2004, Peter Schorn (updated CP/M 2 and SPL packages)

– 12-Apr-2004, Peter Schorn (added MAP/NOMAP capability to switch off key mapping)

– 26-Jan-2004, Peter Schorn (added support for t-state stepping)

– 25-Feb-2003, Peter Schorn (added support for real time simulation)

– 9-Oct-2002, Peter Schorn (added support for simulated hard disk)

– 28-Sep-2002, Peter Schorn (number of tracks per disk can be configured)

– 19-Sep-2002, Peter Schorn (added WARNROM feature)

– 31-Aug-2002, Peter Schorn (added extended ROM features suggested by Scott
LaBombard)

– 4-May-2002, Peter Schorn (added description of MP/M II sample software)

– 28-Apr-2002, Peter Schorn (added periodic timer interrupts and three additional consoles)

– 15-Apr-2002, Peter Schorn (added memory breakpoint)

– 7-Apr-2002, Peter Schorn (added ALTAIRROM / NOALTAIRROM switch)

The first version of this document was written by Charles E. Owen

3 Background
The MITS (Micro Instrumentation and Telemetry Systems) Altair 8800 was announced on the January 1975
cover of Popular Electronics, which boasted you could buy and build this powerful computer kit for only
$397. The kit consisted at that time of only the parts to build a case, power supply, card cage (18 slots),
CPU card, and memory card with 256 *bytes* of memory. Still, thousands were ordered within the first few
months after the announcement, starting the personal computer revolution as we know it today.

Many laugh at the small size of that first kit, noting there were no peripherals and the 256 byte memory size.
But the computer was an open system, and by 1977 MITS and many other small startups had added many
expansion cards to make the Altair quite a respectable little computer. The "Altair Bus" that made this
possible was soon called the S-100 Bus, later adopted as an industry standard, and eventually became the
IEE-696 Bus.

4 Hardware
We are simulating a fairly "loaded" Altair 8800 from about 1977, with the following configuration:

CPU Altair 8800 with Intel 8080 CPU board 62KB of RAM, 2K of EPROM with start boot ROM.

SIO MITS 88-2SIO Dual Serial Interface Board. Port 1 is assumed to be connected to a serial "glass
TTY" that is your terminal running the Simulator.

SIMH AltairZ80 8 of 63

PTR Paper Tape Reader attached to port 2 of the 2SIO board.

PTP Paper Tape Punch attached to port 2 of the 2SIO board. This also doubles as a printer port.

DSK MITS 88-DISK Floppy Disk controller with up to eight drives.

4.1 CPU
We have 2 CPU options that were not present on the original machine but are useful in the simulator. We
also allow you to select memory sizes, but be aware that some sample software requires the full 64K (i.e.
CP/M) and the MITS Disk Basic and Altair DOS require about a minimum of 24K.

SET CPU 8080 Simulates the 8080 CPU (default)
SET CPU Z80 Simulates the Z80 CPU. Note that some software (e.g. most original

Altair software such as 4K Basic) requires an 8080 CPU and will not or
not properly run on a Z80. This is mainly due to the use of the parity
flag on the 8080 which has not always the same semantics on the Z80.

SET CPU 8086 Simulates 8086 CPU. This also enables 1’024 KB of memory by
default.

SET CPU M68K Simulates Motorola M68000 CPU. This also enables 16 MB of memory

by default.

SET CPU ITRAP Causes the simulator to halt if an invalid opcode is detected (depending
on the chosen CPU).

SET CPU NOITRAP Does not stop on an invalid opcode. This is how the real 8080 works.
Note that some software such as 4K Basic apparently tries to execute
nonexistent 8080 instructions. Therefore it is advisable in this case to
SET CPU NOITRAP.

SET CPU 4K
SET CPU 8K
SET CPU 12K
SET CPU 16K
… (in 4K steps)
SET CPU 64K All these set various CPU memory configurations.

SET CPU MEMORY=<nnn>K Sets the memory to <nnn> kilo bytes.

SET CPU BANKED Enables the banked memory support. The simulated memory has eight
banks with address range 0..’COMMON’ (see registers below) and a
common area from ‘COMMON’ to 0FFFF which is common to all banks.
The currently active bank is determined by register 'BANK' (see below).
You can only switch to banked memory if the memory is set to 64K. The
banked memory is used by CP/M 3.

SET CPU NONBANKED Disables banked memory support.

SET CPU CLEARMEMORY Resets all internal memory to 0 and also resets the Memory
Management Unit (MMU) such that all memory pages are RAM. Note
that resetting the CPU does only clear the CPU registers but not the
memory nor the MMU.

SIMH AltairZ80 9 of 63

SET CPU ALTAIRROM Enables the slightly modified but downwards compatible Altair boot
ROM at addresses 0FF00 to 0FFFF. This is the default.

SET CPU NOALTAIRROM Disables standard Altair ROM behavior.

SET CPU MMU Enables the Memory Management Unit (MMU) and clock frequency
support.

SET CPU NOMMU Disables the Memory Management Unit (MMU) and clock frequency
support. The simulator will run with maximum speed which can be more
than twice the speed as with MMU enabled. This feature is only
available for the Z80 and 8080 CPU using 64 KB.

SET CPU VERBOSE Enables warning messages to be printed when the CPU attempts to
write into ROM or into non-existing memory. Also prints a warning
message if the CPU attempts to read from non-existing memory. Also
shows the status of the MMU.

SET CPU QUIET Suppresses all warning messages.

SET CPU STOPONHALT Z80 or 8080 CPU stops when HALT instruction is encountered.

SET CPU LOOPONHALT Z80 or 8080 CPU does not stop when a HALT instruction is
encountered but waits for an interrupt to occur.

The BOOT EPROM card starts at address 0FF00 if it has been enabled by 'SET CPU ALTAIRROM'.
Jumping to this address will boot drive 0 of the floppy controller (CPU must be set to ROM or equivalent
code must be present). If no valid bootable software is present there the machine crashes. This is
historically accurate behavior.

4.1.1 Registers for the 8080 and Z80
CPU registers include the following for the Z80 / 8080:

Name Size Comment
PC 20 The Program Counter for the 8080 and Z80
AF 16 The accumulator (8 bits) and the flag register
 F = S Z - AC - P/V N C
 S = Sign flag.
 Z = Zero Flag.
 - = not used (undefined)
 AC = Auxiliary Carry flag.
 P/V = Parity flag on 8080 (Parity / Overflow flag on Z80)
 - = not used (undefined)
 N = Internal sign flag
 C = Carry flag.
BC 16 The BC register pair.
 Register B is the high 8 bits, C is the lower 8 bits
DE 16 The DE register pair.
 Register D is the high 8 bits, E is the lower 8 bits.
HL 16 The HL register pair.

SIMH AltairZ80 10 of 63

 Register H is the high 8 bits, L is the lower 8 bits.

AF1 16 The alternate AF register (on Z80 only)
BC1 16 The alternate BC register (on Z80 only)
DE1 16 The alternate DE register (on Z80 only)
HL1 16 The alternate HL register (on Z80 only)
IX 16 The IX index register (on Z80 only)
IY 16 The IY index register (on Z80 only)
IFF 8 Interrupt flag (on Z80 only)
IR 8 Interrupt register (on Z80 only)

SR 16 The front panel switches (use D SR 8 for 4k Basic).

WRU 8 The interrupt character. This starts as 5 (Control-E) but some Altair software uses
 this keystroke so best to change this to something exotic such as 1D (which is
 Control-]). But make sure you can actually create this character via the keyboard.

BANK 3 The currently active memory bank (if banked memory is activated - see memory
 options above)

COMMON 16 The starting address of common memory. Originally set to 0C000 (note this
 setting must agree with the value supplied to GENCPM for CP/M 3 system
 generation)

CLOCK 32 The clock speed of the simulated CPU in kHz or 0 to run at maximum speed. To
 set the clock speed for a typical 4 MHz Z80 CPU, use D CLOCK 4000. The
 CP/M utility SPEED measures the clock speed of the simulated CPU.

4.1.2 Registers for the 8086
CPU registers include the following for the 8086:

Name Size Comment
AX 16 AX general purpose register
AL 8 low 8 bits of AX
AH 8 high 8 bits of AX
BX 16 BX general purpose register
BL 8 low 8 bits of BX
BH 8 high 8 bits of BX
CX 16 CX general purpose register
CL 8 low 8 bits of CX
CH 8 high 8 bits of CX
DX 16 DX general purpose register
DL 8 low 8 bits of DX
DH 8 high 8 bits of DX
BP 16 Base Pointer
SI 16 Source Index
DI 16 Destination Index
SP86 16 Stack Pointer

SIMH AltairZ80 11 of 63

CS 16 Code Segment
DS 16 Data Segment
ES 16 Extra Segment
SS 16 Stack Segment
PCX 20 virtual 20-bit program counter
SPX 16 Stack Pointer
IP 16 Instruction Pointer, read-only, to set use PCX which allows 20 bit addresses
FLAGS 16 Flags
 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

 1 1 1 1 OF DF IF TF SF ZF Res. AF Res. PF 1 CF

 OF = Overflow Flag
 DF = Direction Flag
 IF = Interrupt Flag
 TF = Trace Flag
 SF = Sign Flag
 ZF = Zero Flag
 AF = Auxiliary Carry Flag
 PF = Parity Flag
 CF = Carry Flag

4.1.3 Registers for the MC68000
CPU registers include the following for the MC68000

Name Size Comment

M68K_D0 32 D0 – general purpose data register

M68K_D1 32 D1 – general purpose data register

M68K_D2 32 D2 – general purpose data register

M68K_D3 32 D3 – general purpose data register

M68K_D4 32 D4 – general purpose data register

M68K_D5 32 D5 – general purpose data register

M68K_D6 32 D6 – general purpose data register

M68K_D7 32 D7 – general purpose data register

M68K_A0 32 A0 – general purpose address register

M68K_A1 32 A1 – general purpose address register

M68K_A2 32 A2 – general purpose address register

M68K_A3 32 A3 – general purpose address register

M68K_A4 32 A4 – general purpose address register

M68K_A5 32 A5 – general purpose address register

M68K_A6 32 A6 – general purpose address register

M68K_A7 32 A7 – general purpose address register

M68K_PC 32 PC – program counter

SIMH AltairZ80 12 of 63

M68K_SR 32 SR – status register
 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

 T1 T0 S M 0 I2 I1 I0 0 0 0 X N Z V C

 T1 = Trace Enable T1
 T0 = Trace Enable T0
 S = Supervisor / User State
 M = Master / Interrupt State
 I2 = Interrupt Priority Mask I2
 I1 = Interrupt Priority Mask I1
 I0 = Interrupt Priority Mask I0
 X = Extend
 N = Negative
 Z = Zero
 V = Overflow
 C = Carry

M68K_SP 32 SP – stack pointer (located in A7)

M68K_USP 32 USP – user stack pointer

M68K_ISP 32 ISP – interrupt stack pointer

M68K_MSP 32 MSP – master stack pointer

M68K_SFC 32 SFC – source function code register

M68K_DFC 32 DFC – destination function code register

M68K_VBR 32 VBR – vector base register

M68K_CACR 32 CACR – cache control register

M68K_CAAR 32 CAAR – cache address register

M68K_PREF_ADDR 32 last prefetch address

M68K_PREF_DATA 32 last prefetch data

M68K_PPC 32 PPC – previous value of program counter

M68K_IR 32 IR – instruction register

M68K_CPU_TYPE 32 CPU type (read only), 1 for MC68000

The CPU device supports the following debug flags (set with “SET CPU DEBUG=f1{;f}” or “SET CPU
DEBUG” to enable all of them)
LOG_IN Log all IN operations to the file specified with “SET DEBUG <file>”
LOG_OUT Log all OUT operations to the file specified with “SET DEBUG <file>”.

Use “SET NODEBUG” to close the file. Also note that there is no
logging if no file has been specified.

4.2 The Serial I/O Card (2SIO)
This simple programmed I/O device provides 2 serial ports to the outside world, which could be hardware
jumpered to support RS-232 plugs or a TTY current loop interface. The standard I/O addresses assigned by
MITS was 10-11 (hex) for the first port, and 12-13 (hex) for the second. We follow this standard in the
simulator.

SIMH AltairZ80 13 of 63

The simulator directs I/O to/from the first port to the screen. The second port reads from an attachable "tape
reader" file on input, and writes to an attachable "punch file" on output. These files are considered a simple
stream of 8-bit bytes.

The SIO can be configured in SIMH with the following commands:

SET SIO ANSI Bit 8 is set to zero on console output
SET SIO TTY Bit 8 is not touched on console output
SET SIO ALL Console input remain unchanged
SET SIO UPPER Console input is transformed to upper case characters only (This

feature is useful for most Altair software). SET SIO MAP must also
have been executed for this option to take effect - otherwise no
mapping occurs.

SET SIO BS Map the delete character to backspace SET SIO MAP must also have
been executed for this option to take effect - otherwise no mapping
occurs.

SET SIO DEL Map the backspace character to delete SET SIO MAP must also have
been executed for this option to take effect - otherwise no mapping
occurs.

SET SIO QUIET Do not print warning messages
SET SIO VERBOSE Print warning messages (useful for debugging) The register SIOWL

determines how often the same warning is displayed. The default is 3.
SET SIO MAP Enable mapping of characters (see also SET SIO ALL/UPPER/BS/DEL)
SET SIO NOMAP Disable mapping of characters (see also SET SIO

ALL/UPPER/BS/DEL)
SET SIO BELL Displaying ^G (Control-G) sounds the bell
SET SIO NOBELL Do not display ^G (Control-G, bell character. This feature is useful

when a simulated program makes excessive use of the bell character.
Furthermore, the SHOW command prints more information.

SET SIO INTERRUPT Status port 0 creates an interrupt when a character becomes available.
The handler is at SIO register KEYBDH.

SET SIO NOINTERRUPT Status port 0 does not create interrupts.
SET SIO SLEEP Sleeps for SLEEP microseconds after a keyboard status check where

no character was available. This is useful in many operating systems to
avoid high real CPU usage in busy wait loops.

SET SIO NOSLEEP Do not sleep after unsuccessful keyboard status checks.
SET SIO PORT=Port/Terminal/Read/NotRead/Write/Reset/Reset/Data

Port: two digit hex address of the new port
Terminal: one digit decimal number of terminal line
Read: two digit hex mask indicating the bit(s) set when a character is
available
NotRead: two digit hex mask indicating the bit(s) to set in case no
character is available
Write: two digit hex mask indicating the bits set when a character can
be written
Reset: T (port has reset command) or F (port has no reset command)
Reset: two digit hex value of the reset command
Data: T (port accepts OUT, i.e. is a data port) or F (port only has IN, i.e.
is a status port).

SIMH AltairZ80 14 of 63

You can also attach the SIO to a port or a file:
ATTACH SIO 23 Console IO goes via a Telnet connection on port 23 (often requires root

privileges, you can also use another port and use telnet with this port)
ATTACH SIO <filename> Console input is taken from the file with name <filename> and output

goes to the SIMH console. Note that sometimes this does not work as
expected since some application programs or operating system
commands periodically check for input.

DETACH SIO Console IO goes via the regular SIMH console

The SIO device supports the following debug flags (set with “SET SIO DEBUG=f1{;f}” or “SET SIO DEBUG”
to enable all of them)
IN All IN operations on the SIO ports (status and data)
OUT All OUT operations on the SIO ports (status and data)
CMD All OUT operations which are interpreted as commands
VERBOSE All warning messages (currently: none)

The PTP device supports the following debug flags (set with “SET PTP DEBUG=f1{;f}” or “SET PTP
DEBUG” to enable all of them)
IN All IN operations on the PTP ports (status and data)
OUT All OUT operations on the PTP ports (status and data)
CMD All OUT operations which are interpreted as commands
VERBOSE All warning messages (currently: use of unattached PTP)

The PTR device supports the following debug flags (set with “SET PTR DEBUG=f1{;f}” or “SET PTR
DEBUG” to enable all of them)
IN All IN operations on the PTR ports (status and data)
OUT All OUT operations on the PTR ports (status and data)
CMD All OUT operations which are interpreted as commands
VERBOSE All warning messages (currently: use of unattached PTR, attempt to

read past end of attached file)

4.3 The SIMH pseudo device
The SIMH pseudo device facilitates the communication between the simulated ALTAIR and the simulator
environment. This device defines a number of (most R/O) registers (see source code) which are primarily
useful for debugging purposes.

The SIMH pseudo device can be configured with

SET SIMH TIMERON Start periodic timer interrupts
SET SIMH TIMEROFF Stop the periodic timer interrupts

The following variables determine the behavior of the timer:
TIMD This is the delay between consecutive interrupts in milliseconds. Use D TIMD 20 for a 50 Hz

clock.
TIMH This is the address of the interrupt handler to call for a timer interrupt.

The SIMH device supports the following debug flags (set with “SET SIMH DEBUG=f1{;f}” or “SET SIMH
DEBUG” to enable all of them)
IN All IN operations on the SIMH port

SIMH AltairZ80 15 of 63

OUT All OUT operations on the SIMH port
CMD All illegal commands
VERBOSE All other warning or error messages

4.4 The 88-DISK controller
The MITS 88-DISK is a simple programmed I/O interface to the MITS 8-inch floppy drive, which was
basically a Pertec FD-400 with a power supply and buffer board built-in. The controller supports neither
interrupts nor DMA, so floppy access required the sustained attention of the CPU. The standard I/O
addresses were 8, 9, and 0A (hex), and we follow the standard. Details on controlling this hardware are in
the altairz80_dsk.c source file.

The only difference is that the simulated disks may be larger than the original ones: The original disk had 77
tracks while the simulated disks support up to 254 tracks (only relevant for CP/M). You can change the
number of tracks per disk by setting the appropriate value in TRACKS[..]. For example "D TRACKS[0] 77"
sets the number of tracks for disk 0 to the original number of 77. The command "D TRACKS[0-7] 77"
changes the highest track number for all disks to 77. The Mini-Disk support was added by Mike Douglas in
May 2014.

The DSK device can be configured with

SET DSK<n> WRTENB Allow write operations for disk <n>.

SET DSK<n> WRTLCK Disk <n> is locked, i.e. no write operations will be allowed.

The DSK device supports the following debug flags (set with “SET DSK DEBUG=f1{;f}” or “SET DSK
DEBUG” to enable all of them)
IN All IN operations on the controller port
OUT All OUT operations on the controller port
READ All read operations of the disk
WRITE All write operations on the disk
SECTOR_STUCK Warn when the controller appears to be stuck searching for a sector
TRACK_STUCK Warn when the controller appears to be stuck searching for a track
VERBOSE All other warning and error messages (e.g. disk is write locked, disk is

not attached)

4.5 The 88-HDSK controller
The 88-HDSK from MITS/Pertec consists of a 5mb removable platter and a fixed 5mb platter. Each platter is
double sided. Head 0 and 1 are the top and bottom surface of the removable platter and head 2 and 3 are
the top and bottom surface of the fixed platter. Hard disk BASIC treats the two platters as two separate
drives. Each platter has 406 cylinders with 24 sectors per track and 256 bytes per sector.

The disk image file starts with head 0, track 0, sector 0 (0,0,0) through (0,0,23), followed by head 1, track 0,
sector 0 (1,0,0) through (1,0,23). The pattern then repeats starting with (0,1,0). The external hard disk is
accessed through eight ports of a 4-PIO card at I/O addresses A0h-A7h. The module was written by Mike
Douglas in March 2014 and the disk images were provided by Martin Eberhard.

The MHDSK device can be configured with

SET MHDSK <n> WRTENB Allow write operations for hard disk <n>.

SIMH AltairZ80 16 of 63

SET MHDSK <n> WRTLCK Hard disk <n> is locked, i.e. no write operations will be allowed.

The MHDSK device supports the following debug flags (set with “SET MHDSK DEBUG=f1{;f}” or “SET
MHDSK DEBUG” to enable all of them)
READ All read operations of the disk
WRITE All write operations on the disk
VERBOSE All other operations of the disk

4.6 The simulated hard disk
In order to increase the available storage capacity, the simulator features 8 simulated hard disks with a
capacity of 8MB (HDSK0 to HDSK7). Currently only CP/M supports two hard disks as devices I: and J:.

The HDSK device can be configured with

SET HDSK<n> WRTENB Allow write operations for hard disk <n>.

SET HDSK<n> WRTLCK Hard disk <n> is locked, i.e. no write operations will be allowed.

SET HDSK<n> FORMAT=<value> Set the hard disk to <value>. Possible values are

– HDSK (standard simulated AltairZ80 hard disk with 8’192 kB capacity)

– CPM68K (simulated hard drive 16’384 kB capacity for CP/M-68K)

– EZ80FL (128 kB flash)

– P112 (1’440 kB P112)

– SU720 (720 kB Super I/O)

– OSB1 (100 kB Osborne 1 5.25” Single Side Single Density)

– OSB2 (200 kB Osborne 1 5.25” Single Side Dual Density)

– NSSS1 (175 kB Northstar Single Side Dual Density Format 1)

– NSSS2 (175 kB Northstar Single Side Dual Density Format 2)

– NSDS2 (350 kB Northstar Dual Side Dual Density Format 2)

– VGSS (308 kB Vector Single Side Single Density)

– VGDS (616 kB Vector Dual Side Single Density)

– DISK1A (616 kB CompuPro Disk1A Single Side Single Density)

– SSSD8 (standard 8" Single Side Single Density floppy disk with 77 tracks of 26 sectors with
128 bytes, i.e. 256 kB capacity, no skew)

– SSSD8S (standard 8" Single Side Single Density floppy disk with 77 tracks of 26 sectors
with 128 bytes, i.e. 256 kB capacity, standard skew factor 6)

– SSDD8 (standard 8" Single Side Double Density floppy disk with 77 tracks of 26 sectors
with 256 bytes, i.e. 512 kB capacity, no skew)

– SSDD8S (standard 8" Single Side Double Density floppy disk with 77 tracks of 26 sectors
with 256 bytes, i.e. 512 kB capacity, standard skew factor 6)

– DSDD8 (standard 8" Double Side Double Density floppy disk with 77 tracks of 26 sectors
with 512 bytes, i.e. 1’025 kB capacity, no skew)

SIMH AltairZ80 17 of 63

– DSDD8S (standard 8" Double Side Double Density floppy disk with 77 tracks of 26 sectors
with 512 bytes, i.e. 1’025 kB capacity, standard skew factor 6)

– 512SSDD8 (standard 8" Single Side Double Density floppy disk with 77 tracks of 15 sectors
with 512 bytes, i.e. 591 kB capacity, no skew)

– 512DSDD8 (standard 8" Double Side Double Density floppy disk with 77 tracks of 15
sectors with 512 bytes, i.e. 1’183 kB capacity, no skew)

– APPLE-DO (140 kB, Apple II, DOS 3.3)

– APPLE-PO (140 kB, Apple II, PRODOS)

– APPLE-D2 (140 kB, Apple II, DOS 3.3, 128 byte sectors for CP/M 2)

– APPLE-P2 (140 kB, Apple II, PRODOS, 128 byte sectors for CP/M 2)

– MITS (308 kB Altair standard disk with skew)

– MITS2 (1’016 kB Altair extended disk with skew)

– V1050 (410 kB, Visual Technology Visual 1050, 512 byte sectors for CP/M 3)

– Note1: The CP/M 3 implementation that comes with AltairZ80 automatically adapts to the
attached hard disk. It supports sector sizes of 128 bytes, 256 bytes and 512 bytes.

– Note2: The CP/M 2 implementation that comes with AltairZ80 can also adapt to all hard disk
formats with 128 byte sectors. You need to set the correct format with this command after
attaching a file.

– Note3: When attaching a file to a hard disk, the format is guessed based on the size of the
file. In case there is more than one possibility you may need to change the format after
attaching.

SET HDSK<n> GEOM=<t>/<s>/<l> Set the hard disk geometry to <t> tracks with <s> sectors with sector
length <l>. Alternatively you can also use GEOM=T:<t>/N:<s>/S:<s>.

Note that the “Attach” command will choose the correct format based on the size of the attached file. In case
the file does not yet exist it is created and the HDSK format will be used with the currently set capacity.

The HDSK device supports the following debug flags (set with “SET HDSK DEBUG=f1{;f}” or “SET HDSK
DEBUG” to enable all of them)
READ All read operations of the disk
WRITE All write operations on the disk
VERBOSE All other warning and error messages (e.g. disk is write locked, disk is

not attached)

4.7 The simulated network
The simulator supports networking via sockets (TCP/IP) for simulating operating systems such as CP/NET
(see section 5.4) and CPNOS (see section 5.5) which require at least two machines connected by a
network.

The NET device can be configured with

SET NET CLIENT Puts this machine into client mode.

SET NET SERVER Puts this machine into server mode.

ATTACH NET <IP-addr>:<port> Attaches the machine to the given IP address and listening on the
specified port. The IP address is given in a.b.c.d format (0 ≤ a, b, c, d ≤

SIMH AltairZ80 18 of 63

255). A typical example is “ATTACH NET 127.0.0.1:4000” which
attaches to the local host at port 4000. Note that certain “small” port
numbers might require special permissions.

DETACH NET Detaches the machine from the network.

The NET device supports the following debug flags (set with “SET NET DEBUG=f1{;f}” or “SET NET
DEBUG” to enable all of them)
ACCEPT Show a message when a connection is accepted
DROP Show a message when a connection is dropped
IN Show all data received from the network
OUT Show all data transmitted to the network

5 Sample Software
Running an Altair in 1977 you would be running either MITS Disk Extended BASIC, or the brand new and
sexy CP/M Operating System from Digital Research. Or possibly, you ordered Altair DOS back when it was
promised in 1975, and are still waiting for it to be delivered in early 1977.

We have samples of all three for you to check out. We can't go into the details of how they work, but we'll
give you a few hints.

5.1 CP/M Version 2.2
This version is my own port of the standard CP/M to the Altair. There were some "official" versions but I don't
have them. None were endorsed or sold by MITS to my knowledge, however.

To boot CP/M:

sim> attach dsk cpm2.dsk

sim> boot dsk

CP/M feels like DOS, sort of. DIR will work. I have included all the standard CP/M utilities, plus a few
common public-domain ones. I also include the sources to the customized BIOS and some other small
programs. TYPE will print an ASCII file. DUMP will dump a binary one. LS is a better DIR than DIR. ASM will
assemble .ASM files to hex, LOAD will "load" them to binary format (.COM). ED is a simple editor, #A
command will bring the source file to the buffer, T command will "type" lines, L will move lines, E exits the
editor. 20L20T will move down 20 lines, and type 20. Very DECish. DDT is the debugger, DO is a batch-type
command processor. A sample batch file that will assemble and write out the bootable CP/M image (on drive
A) is "SYSCPM2.SUB". To run it, type "DO SYSCPM2".

In order to efficiently transfer files into the CP/M environment use the included program R <filename.ext>. If
you have a file named foo.ext in the current directory (i.e. the directory where SIMH is), executing R
FOO.EXT under CP/M will transfer the file onto the CP/M disk. Transferring a file from the CP/M
environment to the SIMH environment is accomplished by W <filename.ext> for text files or by W
<filename.ext> B for binary files. The simplest way for transferring multiple files is to create a ".SUB" batch
file which contains the necessary R resp. W commands.

If you need more storage space you can use a simulated hard disk on drives I: and J:. To use do "attach
HDSK0 hdi.dsk" and issue the "XFORMAT I:" resp. "XFORMAT J:" command from CP/M do initialize the
disk to an empty state.

SIMH AltairZ80 19 of 63

The disk "cpm2.dsk" contains the following files:

Name Ext Size Comment

ASM .COM 8K CP/M assembler

BDOS .MAC 66K Basic Disk Operating System assembler source code

BOOT .COM 2K transfer control to boot ROM

BOOT .MAC 2K source for BOOT.COM

BOOTGEN .COM 2K put a program on the boot sectors

CBIOSX .MAC 48K CP/M 2 BIOS source for Altair

CCP .MAC 26K Console Command Processor assembler source code, original Digital
Research

CCPZ .MAC 50K Console Command Processor assembler source code, Z80 replacement
with some extra features

CCPZ .TXT 40K documentation for CCPZ

CFGCCP .LIB 2K configuration file for system generation, original CCP

CFGCCPZ .LIB 2K configuration file for system generation, with CCPZ

COPY .COM 2K copy disks

CPU .COM 2K get and set the CPU type (8080 or Z80)

CPU .MAC 2K source for CPU.COM

CREF80 .COM 4K cross reference utility

DDT .COM 6K 8080 debugger

DDTZ .COM 10K Z80 debugger

DIF .COM 4K determine differences between two files

DO .COM 4K batch processing with SuperSub (SUBMIT.COM replacement)

DSKBOOT .MAC 8K source for boot ROM

DUMP .COM 2K hex dump a file

ED .COM 8K line editor

ELIZA .BAS 10K Eliza game in Basic

EX .MAC 48K source for EX8080.COM, EXZ80DOC.COM, EXZ80ALL.COM

EX .SUB 2K benchmark execution of
EX8080.COM,EXZ80DOC.COM,EXZ80ALL.COM

EX8080 .COM 12K exercise 8080 instruction set

EXZ80ALL .COM 12K exercise Z80 instruction set, undefined status bits taken into account

EXZ80DOC .COM 12K exercise Z80 instruction set, no undefined status bits taken into account

FORMAT .COM 2K format disks

GO .COM 0K start the currently loaded program at 100H

HALT .COM 2K execute the HALT operation for returning to the sim> command prompt –
useful as the last command in a script

SIMH AltairZ80 20 of 63

Name Ext Size Comment

HDSKBOOT .MAC 6K boot code for hard disk

L80 .COM 12K Microsoft linker

LADDER .COM 40K game

LADDER .DAT 2K high score file for LADDER.COM

LIB80 .COM 6K library utility

LOAD .COM 2K load hex files

LS .COM 4K directory utility

LU .COM 20K library utility

M80 .COM 20K Microsoft macro assembler

MBASIC .COM 24K Microsoft Basic interpreter

MC .SUB 2K assemble and link an assembler program

MCC .SUB 2K read, assemble and link an assembler program

MCCL .SUB 2K assemble, link and produce listing

MOVER .MAC 2K moves operating system in place

OTHELLO .COM 12K Othello (Reversi) game

PIP .COM 8K Peripheral Interchange Program

PRELIM .COM 2K preliminary CPU tests

PRELIM .MAC 6K source code for PRELIM.COM

R .COM 4K read files from SIMH environment. Supports wild card expansion on
UNIX and Windows for reading multiple files.

RSETSIMH .COM 2K reset SIMH interface

RSETSIMH .MAC 2K assembler source for RSETSIMH.COM

SHOWSEC .COM 2K show sectors on a disk

SID .COM 8K debugger for 8080

SPEED .COM 2K utility to measure the clock speed of the simulated CPU

STAT .COM 6K provide information about currently logged disks

SUBMIT .COM 2K batch processing

SURVEY .COM 2K system survey

SURVEY .MAC 16K assembler source for SURVEY.COM

SYSCOPY .COM 2K copy system tracks between disks

SYSCPM2 .SUB 2K create CP/M 2 on drive A:, Digital Research CCP and BDOS

SYSCPM2Z .SUB 2K Create CP/M 2 on drive A:, CCPZ and Digital Research BDOS

TIMER .COM 2K perform various timer operations

TIMER .MAC 2K source code for TIMER.COM

UNCR .COM 8K un-crunch utility

SIMH AltairZ80 21 of 63

Name Ext Size Comment

UNERA .COM 2K un-erase a file

UNERA .MAC 16K source for UNERA.COM

USQ .COM 2K un-squeeze utility

W .COM 2K write files to SIMH environment. Supports CP/M wild card expansion for
writing multiple files.

WM .COM 12K word master screen editor

WM .HLP 4K help file for WM.COM

WORM .COM 4K worm game for VT100 terminal

XFORMAT .COM 2K initialize a drive (floppy or hard disk)

XSUB .COM 2K support for DO.COM

ZAP .COM 10K SuperZap 5.2 disk editor configured for VT100

ZSID .COM 10K debugger for Z80

ZTRAN4 .COM 4K translate 8080 mnemonics into Z80 equivalents

5.2 CP/M Version 3 with banked memory
CP/M 3 is the successor to CP/M 2.2. A customized BIOS (BIOS3.MAC) is included to facilitate modification
if so desired. The defaults supplied in GENCPM.DAT for system generation can be used. BOOTGEN.COM
is used to place the CP/M loader (LDR.COM) on the boot tracks of a disk.

Running CP/M 3 with banked memory:

sim> attach dsk cpm3.dsk

sim> reset cpu

sim> set cpu banked

sim> set cpu itrap

sim> boot dsk

Executing "DO SYSCPM3" will re-generate the banked version of CP/M 3. You can boot CP/M 3 with or
without a Z80 CPU. The Z80 CPU is needed for both sysgens due to the use of BOOTGEN.COM which
requires it.

The disk "cpm3.dsk" contains the following files:

Name Ext Size Comment

ASM .COM 8K CP/M assembler

ASSIGN .SYS 2K

BDOS3 .SPR 10K

BIOS3 .MAC 28K CP/M 3 BIOS source for Altair SIMH

BIOS3 .SPR 4K

BNKBDOS3 .SPR 14K

BNKBIOS3 .SPR 4K

SIMH AltairZ80 22 of 63

Name Ext Size Comment

BOOT .COM 2K transfer control to boot ROM

BOOTGEN .COM 2K put a program on the boot sectors

CCP .COM 4K

COPYSYS .COM 2K

CPM3 .SYS 18K

CPMLDR .MAC 38K CP/M 3 loader assembler source

DATE .COM 4K date utility

DDT .COM 6K 8080 debugger

DDTZ .COM 10K Z80 debugger

DEFS .LIB 2K include file for BIOS3.MAC to create banked CP/M 3

DEVICE .COM 8K

DIF .COM 4K determine differences between two files

DIR .COM 16K directory utility

DO .COM 6K batch processing (SUBMIT.COM)

DUMP .COM 2K

ED .COM 10K

ERASE .COM 4K

GENCOM .COM 16K

GENCPM .COM 22K

GENCPM .DAT 4K CP/M generation information for banked version

GENCPMNB .DAT 4K CP/M generation information for non-banked version

GET .COM 8K

HELP .COM 8K help utility

HELP .HLP 62K help files

HEXCOM .CPM 2K

HIST .UTL 2K

INITDIR .COM 32K

L80 .COM 12K Microsoft linker

LDR .COM 4K CP/M loader with optimized loader BIOS

LDRBIOS3 .MAC 14K optimized (for space) loader BIOS

LIB .COM 8K Digital Research librarian

LINK .COM 16K Digital Research linker

LOAD .COM 2K

M80 .COM 20K Microsoft macro assembler

SIMH AltairZ80 23 of 63

Name Ext Size Comment

MC .SUB 2K assemble and link an assembler program

MCC .SUB 2K read, assemble and link an assembler program

PATCH .COM 4K

PIP .COM 10K Peripheral Interchange Program

PROFILE .SUB 2K commands to be executed at start up

PUT .COM 8K

R .COM 4K read files from SIMH environment

RENAME .COM 4K

RESBDOS3 .SPR 2K

RMAC .COM 14K Digital Research macro assembler

RSETSIMH .COM 2K reset SIMH interface

SAVE .COM 2K

SCB .MAC 2K

SET .COM 12K

SETDEF .COM 6K

SHOW .COM 10K

SHOWSEC .COM 4K show sectors on a disk

SID .COM 8K 8080 debugger

SUBMIT COM 6K batch processing

SYSCOPY .COM 2K copy system tracks between disks

SYSCPM3 .SUB 2K create banked CP/M 3 system

TRACE .UTL 2K

TSHOW .COM 2K show split time

TSTART .COM 2K create timer and start it

TSTOP .COM 2K show final time and stop timer

TYPE .COM 4K

UNERA .COM 2K un-erase a file

W .COM 4K write files to SIMH environment

XREF .COM 16K cross reference utility

ZSID .COM 10K Z80 debugger

5.3 MP/M II with banked memory
MP/M II is an acronym for MultiProgramming Monitor Control Program for Microprocessors. It is a multi-user
operating system for an eight bit microcomputer. MP/M II supports multiprogramming at each terminal. This
version supports four terminals available via Telnet. To boot:

SIMH AltairZ80 24 of 63

sim> attach dsk mpm.dsk

sim> set cpu itrap

sim> set cpu z80

sim> set cpu altairrom

sim> set cpu banked

sim> attach sio 23

sim> d common b000

sim> boot dsk

Now connect a Telnet session to the simulator and type "MPM" at the "A>" prompt. Now you can connect up
to three additional terminals via Telnet to the Altair running MP/M II. To re-generate the system perform "DO
SYSMPM" in the CP/M environment (not possible under MP/M since XSUB is needed).

The disk "mpm.dsk" contains the following files:

Name Ext Size Comment

ABORT .PRL 2K abort a process

ABORT .RSP 2K

ASM .PRL 10K MP/M assembler

BNKBDOS .SPR 12K banked BDOS

BNKXDOS .SPR 2K banked XDOS

BNKXIOS .SPR 4K banked XIOS

BOOTGEN .COM 2K copy an executable to the boot section

CONSOLE .PRL 2K print console number

CPM .COM 2K return to CP/M

CPM .MAC 2K source for CPM.COM

DDT .COM 6K MP/M DDT

DDT2 .COM 6K CP/M DDT

DDTZ .COM 10K CP/M DDT with Z80 support

DIF .COM 4K difference between two files

DIR .PRL 2K directory command

DO .COM 2K batch processing (SUBMIT.COM)

DSKRESET .PRL 2K disk reset command

DUMP .MAC 6K source for DUMP.PRL

DUMP .PRL 2K dump command

ED .PRL 10K MP/M line editor

ERA .PRL 2K erase command

ERAQ .PRL 4K erase command (verbose)

GENHEX .COM 2K

SIMH AltairZ80 25 of 63

Name Ext Size Comment

GENMOD .COM 2K

GENSYS .COM 10K

L80 .COM 12K Microsoft linker

LDRBIOS .MAC 14K loader BIOS

LIB .COM 8K library utility

LINK .COM 16K linker

LOAD .COM 2K loader

M80 .COM 20K Microsoft macro assembler

MC .SUB 2K assemble and link an assembler program

MCC .SUB 2K read, assemble and link an assembler program

MPM .COM 8K start MP/M II

MPM .SYS 26K MP/M system file

MPMD .LIB 2K define a banked system

MPMLDR .COM 6K MP/M loader without LDRBIOS

MPMSTAT .BRS 6K status of MP/M system

MPMSTAT .PRL 6K

MPMSTAT .RSP 2K

MPMXIOS .MAC 26K XIOS for MP/M

PIP .PRL 10K MP/M peripheral interchange program

PIP2 .COM 8K CP/M peripheral interchange program

PRINTER .PRL 2K

PRLCOM .PRL 4K

R .COM 4K read a file from the SIMH environment

RDT .PRL 8K debugger for page relocatable programs

REN .PRL 4K rename a file

RESBDOS .SPR 4K non-banked BDOS

RMAC .COM 14K Digital Research macro assembler

RSETSIMH .COM 2K reset SIMH interface

SCHED .BRS 2K schedule a job

SCHED .PRL 4K

SCHED .RSP 2K

SDIR .PRL 18K fancy directory command

SET .PRL 8K set parameters

SHOW .PRL 8K show status of disks

SIMH AltairZ80 26 of 63

Name Ext Size Comment

SPOOL .BRS 4K spool utility

SPOOL .PRL 4K

SPOOL .RSP 2K

STAT .COM 6K CP/M stat command

STAT .PRL 10K MP/M stat command

STOPSPLR .PRL 2K stop spooler

SUBMIT .PRL 6K MP/M submit

SYSCOPY .COM 2K copy system tracks

SYSMPM .SUB 2K do a system generation

SYSTEM .DAT 2K default values for system generation

TMP .SPR 2K

TOD .PRL 4K time of day

TSHOW .COM 2K show split time

TSTART .COM 2K create timer and start it

TSTOP .COM 2K show final time and stop timer

TYPE .PRL 2K type a file on the screen

USER .PRL 2K set user area

W .COM 4K write a file to SIMH environment

XDOS .SPR 10K XDOS

XREF .COM 16K cross reference utility

XSUB .COM 2K for CP/M DO

5.4 CP/NET
This software is included as part of the archive cpnet.zip. To bring up the server component:

sim> attach dsk cpnetserver.dsk

sim> d common ab00

sim> set cpu 64k

sim> set cpu itrap

sim> set cpu z80

sim> set cpu altairrom

sim> set cpu banked

sim> set simh timeroff

sim> attach sio 23

sim> set net server

sim> at net 127.0.0.1:4000

SIMH AltairZ80 27 of 63

sim> boot dsk

You can also execute “AltairZ80 cpnetserver” for the same effect or type “do cpnetserver<return>” at the
“sim>” command prompt. Then connect via Telnet to the simulator and type “mpm <return>” at the “0A>”
command prompt to start the MP/M CP/NET server.

To bring up a client, start another instance of AltairZ80 and type the following at the command prompt:

sim> attach dsk cpnetclient.dsk

sim> set cpu 64k

sim> set cpu noitrap

sim> set cpu z80

sim> set cpu altairrom

sim> set cpu nonbanked

sim> reset cpu

sim> set sio ansi

sim> set net client

sim> at net 127.0.0.1:4000

sim> boot dsk

You can also execute “AltairZ80 cpnetclient” for the same effect or type “do cpnetclient<return>” at the
“sim>” command prompt. Then

A>cpnetldr<return> ; loads CP/NET client

A>login<return> ; to login

A>network b:=a: ; to map server drive A: to client drive B:

A>dir b: ; shows the contents of the server drive A:

The MP/M server is configured to accept one or two network clients. So you can repeat the previous
procedure for a second client if you wish.

Note that all system specific sources (SNIOS.MAC, NETWRKIF.MAC, MPMXIOS.MAC) are included on
cpnetclient.dsk respectively cpnetserver.dsk. When executing “GENSYS” for re-creating MP/M, keep in mind
to include SERVER.RSP and NETWRKIF.RSP as this is not automatically suggested by GENSYS.

5.5 CPNOS
CPNOS is a thin client front-end for the CP/NET server. This software is also included as part of the archive
cpnet.zip. In order to execute, first bring up a CP/NET server as described in section 5.4. Then for the
client, start another instance of AltairZ80:

sim> set cpu 64k

sim> set cpu noitrap

sim> set cpu z80

sim> set cpu noaltairrom

sim> set cpu nonbanked

sim> reset cpu

sim> set sio ansi

sim> set net client

SIMH AltairZ80 28 of 63

sim> at net 127.0.0.1:4000

sim> load cpnos.com f000

sim> g f000

For the same effect you can also execute “AltairZ80 cpnos” or type “do cpnos<return>” at the “sim>”
command prompt. At the “LOGIN=” prompt, just type return and you will see the familiar “A>” prompt but the
drive is the A: drive of the MP/M CP/NET server (you can also attach other disks to the server and they will
become available to the CPNOS client). You can also connect a second CPNOS client to the same CP/NET
server – further connection attempts will block after logging in until another CPNOS client is disconnected
(e.g. by typing ^E to stop the simulator and then typing “bye<return>” at the simh command prompt). It is
also possible to have both a CP/NET client and a CPNOS thin client connect to the same CP/NET server.

Note that all system specific sources (CPBIOS.MAC and CPNIOS.MAC) are included on cpnetclient.dsk.

5.6 CP/M application software
There is also a small collection of sample application software containing the following items:

- SPL a Small Programming Language with a suite of sample programs

- PROLOGZ a Prolog interpreter written in SPL with sources

- PASCFORM a Pascal pretty printer written in Pascal

- Pascal MT+ Pascal language system needed to compile PASCFORM

The sample software comes on "app.dsk" and to use it do
sim> attach dsk1 app.dsk

before booting CP/M.

The disk "app.dsk" contains the following files:

Name Ext Size Comment

ACKER .COM 2K compute the Ackermann function

ACKER .SPL 4K compute the Ackermann function, SPL source

BOOTGEN .COM 2K copy the operating system to the rights sectors and tracks

BOOTGEN .SPL 6K SPL source for BOOTGEN.COM

C .SUB 2K batch file for compiling an SPL source file

CALC .PRO 4K Prolog demo program: Calculator

DIF .COM 4K

DIF .SPL 10K SPL source for DIF.COM

FAC .COM 2K compute the factorial

FAC .SPL 4K compute the factorial, SPL source

FAMILY .PRO 4K Prolog demo program: Family relations

FORMEL .COM 4K calculator

FORMEL .SPL 6K calculator, SPL source

INTEGER .PRO 2K Prolog demo program: Integer arithmetic

KNAKE .PRO 2K Prolog demo program: Logic puzzle

SIMH AltairZ80 29 of 63

Name Ext Size Comment

LINKMT .COM 12K Pascal MT+ 5.5 linker

MTERRS .TXT 6K Pascal MT+ error messages

MTPLUS .000 14K Pascal MT+ 5.5 compiler file

MTPLUS .001 12K Pascal MT+ 5.5 compiler file

MTPLUS .002 8K Pascal MT+ 5.5 compiler file

MTPLUS .003 8K Pascal MT+ 5.5 compiler file

MTPLUS .004 18K Pascal MT+ 5.5 compiler file

MTPLUS .005 8K Pascal MT+ 5.5 compiler file

MTPLUS .006 6K Pascal MT+ 5.5 compiler file

MTPLUS .COM 36K Pascal MT+ 5.5 compiler

PASCFORM .COM 36K Pascal formatter

PASCFORM .PAS 54K Pascal formatter source code

PASCFORM .SUB 2K create Pascal formatter

PASLIB .ERL 24K Pascal MT+ 5.5 run time library

PINST .COM 4K terminal installation program for PROLOGZ

PINST .SPL 16K terminal installation program for PROLOGZ, SPL source

PRIM .COM 2K compute prime numbers

PRIM .SPL 2K compute prime numbers, SPL source

PROLOGZ .COM 16K PROLOGZ interpreter and screen editor

PROLOGZ .SPL 54K SPL source for PROLOGZ

PROLOGZ .TXT 40K PROLOGZ documentation in German

PROLOGZU .MAC 2K helper functions for PROLOGZ in assembler

QUEEN .PRO 2K Prolog demo program: N-queens problem

READ .COM 4K transfer a file from the file system to the CP/M disk, see also
WRITE.COM. Often the name of this program is abbreviated to R.COM.

READ .SPL 10K SPL source for READ.COM

RELDUMP .COM 4K dump a .REL file to the console

RELDUMP .SPL 10K dump a .REL file to the console, SPL source

SHOWSEC .COM 2K show a disk sector

SHOWSEC .SPL 6K SPL source for SHOWSEC.COM

SIEVE .COM 2K compute prime numbers with a sieve

SIEVE .SPL 6K compute prime numbers with a sieve, SPL source

SPEED .COM 2K utility to measure the clock speed of the simulated CPU

SPEED .SPL 4K SPL source for SPEED.COM

SPL .COM 28K the SPL compiler itself

SIMH AltairZ80 30 of 63

Name Ext Size Comment

SPL .TXT 50K SPL language and compiler documentation

SPLERROR .DAT 8K error messages of the compiler

SPLRTLB .REL 2K SPL runtime library

SYSCOPY .COM 2K copy the system tracks between disks

SYSCOPY .SPL 6K SPL source for SYSCOPY.COM

WC .COM 6K word count and query facility

WC .SPL 14K word count and query facility, SPL source

WRITE .COM 2K write a CP/M file to the file system, see also READ.COM. Often the
name of this program is abbreviated to W.COM.

WRITE .SPL 8K SPL source for WRITE.COM

XFORMAT .COM 2K format a regular disk or a hard disk

XFORMAT .SPL 6K SPL source for XFORMAT.COM

5.7 MITS Disk Extended BASIC Version 4.1
This was the commonly used software for serious users of the Altair computer. It is a powerful (but slow)
BASIC with some extended commands to allow it to access and manage the disk. There was no operating
system it ran under. This software is part of the archive altsw.zip. To boot:

sim> set cpu 8080 ;Z80 will not work

sim> attach dsk mbasic.dsk

sim> set sio upper

sim> go ff00

MEMORY SIZE? [return]

LINEPRINTER? [C return]

HIGHEST DISK NUMBER? [0 return] (0 here = 1 drive system)

NUMBER OF FILES? [3 return]

NUMBER OF RANDOM FILES? [2 return]

44041 BYTES FREE

ALTAIR BASIC REV. 4.1

[DISK EXTENDED VERSION]

COPYRIGHT 1977 BY MITS INC.

OK

[MOUNT 0]

OK

[FILES]

SIMH AltairZ80 31 of 63

5.8 Altair DOS Version 1.0
This was long promised but not delivered until it was almost irrelevant. A short attempted tour will reveal it to
be a dog, far inferior to CP/M. This software is part of the archive altsw.zip. To boot:

sim> d tracks[0-7] 77 ;set to Altair settings

sim> set cpu altairrom

sim> attach dsk altdos.dsk

sim> set sio upper

sim> go ff00

MEMORY SIZE? [return]

INTERRUPTS? N [return]

HIGHEST DISK NUMBER? [0 return] (3 here = 4 drive system)

HOW MANY DISK FILES? [3 return]

HOW MANY RANDOM FILES? [2 return]

056449 BYTES AVAILABLE

DOS MONITOR VER 1.0

COPYRIGHT 1977 BY MITS INC

.[MNT 0]

.[DIR 0]

5.9 Altair Basic 3.2 (4k)
In order to run the famous 4k Basic, use the following commands (the trick is to get the Switch Register
right). This software is part of the archive altsw.zip. You can also use “altairz80 bas432” to run this version
of Basic. Note that the underscore character (“_”) can be used to cancel the last character entered, i.e.
“PRINT 199_8” will print 198.

sim> set cpu 8080 ;note 4k Basic will not run on a Z80 CPU

sim> set sio upper ;4k Basic does not like lower case letters as input

sim> set cpu noitrap ;4k Basic likes to execute non 8080 instructions-ignore

sim> set sio ansi ;4k Basic produces 8-bit output, strip to seven bits

sim> d sr 8 ;good setting for the Switch Register

sim> load 4kbas32.bin;load it at 0

sim> g ;and start it

MEMORY SIZE? [return]

TERMINAL WIDTH? [return]

WANT SIN? [Y]

61911 BYTES FREE

SIMH AltairZ80 32 of 63

BASIC VERSION 3.2

[4K VERSION]

OK

5.10 Altair Basic 4.0 (4k)
An improved 4K Basic is also as part of the archive altsw.zip. You can also use “altairz80 bas440” to run
this version of Basic.

sim> set cpu 8080 ;note 4k Basic will not run on a Z80 CPU

sim> set sio upper ;4k Basic does not like lower case letters as input

sim> set cpu noitrap ;4k Basic likes to execute non 8080 instructions-ignore

sim> set sio ansi ;4k Basic produces 8-bit output, strip to seven bits

sim> d sr 8 ;good setting for the Switch Register

sim> load 4kbas40.bin;load it at 0

sim> g ;and start it

MEMORY SIZE? [return]

TERMINAL WIDTH? [return]

WANT SIN? [Y]

61900 BYTES FREE

4K BASIC 4.0

COPYRIGHT MITS 1976

OK

5.11 Altair 8k Basic
Running 8k Basic follows the procedure for 4k Basic. This software is part of the archive altsw.zip.

sim> set cpu 8080 ;note 8k Basic will not run on a Z80 CPU

sim> set sio upper ;8k Basic does not like lower case letters as input

sim> set sio ansi ;8k Basic produces 8-bit output, strip to seven bits

sim> d sr 8 ;good setting for the Switch Register

sim> load 8kbas.bin 0 ;load it at 0

sim> go 0 ;and start it

MEMORY SIZE? [A]

WRITTEN FOR ROYALTIES BY MICRO-SOFT

MEMORY SIZE? [return]

TERMINAL WIDTH? [return]

SIMH AltairZ80 33 of 63

WANT SIN-COS-TAN-ATN? [Y]

58756 BYTES FREE

ALTAIR BASIC REV. 4.0

[EIGHT-K VERSION]

COPYRIGHT 1976 BY MITS INC.

OK

5.12 Altair Basic 4.0
This software is part of the archive altsw.zip. Execute the following commands to run Altair Extended Basic:

sim> set sio upper ;Extended Basic requires upper case input

sim> set sio ansi ;Extended Basic produces 8-bit output, strip to 7 bits

sim> d sr 8 ;good setting for the Switch Register

sim> load exbas.bin 0 ;load it at 0

sim> go 0 ;and start it

16384 Bytes loaded at 0.

MEMORY SIZE? [return]

WANT SIN-COS-TAN-ATN? [Y]

50606 BYTES FREE

ALTAIR BASIC REV. 4.0

[EXTENDED VERSION]

COPYRIGHT 1977 BY MITS INC.

OK

5.13 Altair Disk Extended Basic Version 300-5-C
This version of Basic was provided by Scott LaBombard. This software is part of the archive altsw.zip. To
execute use the following commands:

sim> d tracks[0-7] 77 ;set to Altair settings

sim> at dsk extbas5.dsk

sim> g 0

MEMORY SIZE? [return]

LINEPRINTER? [C]

HIGHEST DISK NUMBER? [0]

HOW MANY FILES? [3]

HOW MANY RANDOM FILES? [3]

SIMH AltairZ80 34 of 63

42082 BYTES FREE

ALTAIR DISK EXTENDED BASIC

VERSION 300-5-C [01NOV78]

COPYRIGHT 1978 BY MITS INC.

OK

5.14 Altair Disk Extended Basic Version 5.0
This version of Basic can be found on Andrew Kessel’s http://www.altairage.com/ site. Note that the MBL
files on this site need to be converted to plain binary files using the Python script in the appendix. This
software is part of the archive altsw.zip. To execute use the following commands:

sim> d tracks[0-7] 77 ;set to Altair settings

sim> at dsk disbas50.dsk

sim> d sr 8

sim> load disbas50.bin 0

sim> g 0

MEMORY SIZE? [return]

LINEPRINTER? [C]

HIGHEST DISK NUMBER? [return]

HOW MANY FILES? [3]

HOW MANY RANDOM FILES? [3]

41695 BYTES FREE

ALTAIR BASIC 5.0 [14JUL78]

[DISK EXTENDED VERSION]

COPYRIGHT 1978 BY MITS INC.

OK

5.15 Altair Hard Disk Basic 300-5-C
This version of Basic was provided by Martin Eberhard and uses the MHDSK device contributed
by Mike Douglas. This software is part of the archive althdsw.zip. To execute use the following
commands or type ÒAltairZ80 hdbasicÓ in a command shell.

sim> set sio ansi

sim> set sio nobell ;avoid problems with accounting software

sim> attach mhdsk0 hdbasic-300-5-c-acct.dsk

SIMH AltairZ80 35 of 63

sim> attach mhdsk1 hdbasic-300-5-f.dsk

sim> attach dsk0 fdbasic-300-5-f.dsk ;floppy disk for copying

sim> boot mhdsk

HDBL 1.01

LOADING

MEMORY SIZE? [return]

LINEPRINTER? [C]

HIGHEST DISK NUMBER? [2]

HOW MANY FILES? [4]

CURRENT DAY? [4]

CURRENT MONTH? [4]

CURRENT YEAR? [88]

32762 BYTES FREE

ALTAIR HARD DISK BASIC

VERSION 300-5-C [02NOV78]

COPYRIGHT 1978 BY MITS INC.

OK

5.16 Altair programming languages VTL-2 and MINOL
Emmanuel ROCHE retyped the manuals and assembler code for these two tiny languages. You need the
archive minolvtl.zip which contains full documentation, sources and command files to execute the
simulator.

5.17 UCSD Pascal II.0
The software is part of the ucsd.zip archive. To run it, type altairz80 ucsd at your command prompt or
alternatively invoke altairz80 and type "do ucsd" at the "sim>" command prompt.

Useful hints:

– ? shows additional commands.

– V shows online volumes in the Filer.

– “ :” denotes the prefixed volume.

– Compiling the compiler and similar tools: Attach the correct disk and set the prefix to the
name of the mounted volume. Then the include files will be found.

– To invoke the Basic compiler rename SYSTEM.COMPILER to PASCAL.COMPILER and
then rename BASIC.COMPILER to SYSTEM.COMPILER.

– If you get "Please re-boot" after crunching a disk: type ^E, "g 0" and "pascal" to restart the
system.

DSK0 contains a fairly complete development system with Pascal, Assembler and Basic.
Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit [B]

SIMH AltairZ80 36 of 63

 DSK0:

 SYSTEM.MICRO 19 9-Feb-79 10 512 Datafile

 SYSTEM.FILER 28 10-Apr-79 29 512 Codefile

 SYSTEM.EDITOR 45 10-Feb-79 57 512 Codefile

 SYSTEM.LINKER 22 10-Feb-79 102 512 Codefile

 SYSTEM.COMPILER 68 8-Feb-79 124 512 Codefile

 SYSTEM.SYNTAX 14 2-May-79 192 512 Textfile

 SETUP.CODE 25 14-May-79 206 512 Codefile

 BINDER.CODE 6 3-May-79 231 512 Codefile

 SYSTEM.MISCINFO 1 10-Feb-79 237 192 Datafile

 VT100GOTO.TEXT 4 10-Apr- 7 238 512 Textfile

 VT100GOTO.CODE 2 10-Apr- 7 242 512 Codefile

 SYSTEM.PASCAL 33 10-Apr- 7 244 512 Datafile

 SYSTEM.LIBRARY 17 10-Apr- 7 277 512 Datafile

 BASIC.COMPILER 30 11-Apr-79 294 512 Codefile

 LOOP.TEXT 4 10-Apr- 7 324 512 Textfile

 LOOP.CODE 4 10-Apr- 7 328 512 Codefile

 Z80.ERRORS 8 28-Mar-79 332 70 Datafile

 Z80.OPCODES 3 20-Dec-78 340 68 Datafile

 SYSTEM.ASSMBLER 53 13-Apr-79 343 512 Codefile

 < UNUSED > 98 396

 19/19 files<listed/in-dir>, 396 blocks used, 98 unused, 98 in largest

5.18 CP/M-68K
The software is part of the cpm68k.zip archive. To run it, type Òaltairz80 cpm68kÓ at your
command prompt or alternatively invoke altairz80 and type Òdo cpm68kÓ at the Òsim>Ó command
prompt.

6 Special simulator features

6.1 Memory access breakpoints (8080/Z80 only)
In addition to the regular SIMH features such as PC queue, breakpoints etc., this simulator supports memory
access breakpoints. A memory access breakpoint is triggered when a pre-defined memory location is
accessed (read, write or update). To set a memory location breakpoint enter

sim> break -m <location>

Execution will stop whenever an operation accesses <location>. Note that a memory access breakpoint is
not triggered by fetching code from memory (this is the job of regular breakpoints). This feature has been
implemented by using the typing facility of the SIMH breakpoints.

6.2 Instruction breakpoints (8080/Z80/8086)
One can also set a breakpoint once a certain instruction is executed. To set an instruction breakpoint enter

sim> break –I <first byte of instruction>

Execution will stop whenever an instruction is executed which starts with <first byte of instruction>.

SIMH AltairZ80 37 of 63

7 Brief summary of all major changes to the original Altair
simulator

– Full support for Z80. CP/M software requiring a Z80 CPU now runs properly. DDTZ and
PROLOGZ are included for demonstration purposes.

– Added banked memory support.

– PC queue implemented.

– Full assembler and dis-assembler support for Z80 and 8080 mnemonics. Depending on the
current setting of the CPU, the appropriate mnemonics are used.

– The BOOT ROM was changed to fully load the software from disk. The original code
basically loaded a copy of itself from the disk and executed it.

– ROM and memory size settings are now fully honored. This means that you cannot write
into the ROM or outside the defined RAM (e.g. when the RAM size was truncated with the
SET CPU commands). This feature allows programs which check for the size of available
RAM to run properly (e.g. 4k Basic). In addition one can enable and disable the ROM which
is useful in special cases (e.g. when testing a new version of the ROM).

– The console can also be used via Telnet. This is useful when a terminal is needed which
supports cursor control such as a VT100. PROLOGZ for example has a built-in screen
editor which works under Telnet.

– Simplified file exchange for CP/M. Using the READ resp. R program under CP/M one can
easily import files into CP/M from the regular file system. Note that PIP does not work
properly on non-text files on PTR.

– The WRITE resp. W program can be used to transfer files from the CP/M environment to the
regular environment (binary or ASCII transfer).

– The last character read from PTR is always Control-Z (the EOF character for CP/M). This
makes sure that PIP (Peripheral Interchange Program on CP/M) will terminate properly.

– Fixed a bug in the BIOS warm boot routine which caused CP/M to crash.

– Modified the BIOS for CP/M to support 8 disks.

– Added CP/M 3 banked version as sample software

– Changed from octal to hex

– Made the DSK and SIO device more robust (previously malicious code could crash the
simulator)

– Added memory access break points

– Added periodic timer interrupts (useful for MP/M)

– Added additional consoles (useful for MP/M)

– Added MP/M II banked version as sample software

– Added networking support for CP/NET and CPNOS

8 Appendix: Python script for converting MBL files to plain
binary files

#! /usr/bin/python
-*- coding: UTF-8 -*-

SIMH AltairZ80 38 of 63

formatted for tab-stops 4

By Peter Schorn, peter.schorn@acm.org, September 2006

Transform an MBL file to a binary file suitable for loading with SIMH

Structure of MBL files is as follows:
<byte>+ 0x00 0x00
(checkSum<byte> 0x3c count<byte> loadLow<byte> loadHigh<byte>
<byte> * count)+
where the lower 8 bit of the load address are determined by loadLow
and the upper 8 bit of the load address are determined by loadHigh
For checkSum the following rules hold:
For the first load record: 0
For the second load record: (sum of all load bytes of the first
load record) mod 256
For the third and higher load records: (sum of all load bytes of
the preceding load record - 1) mod 256
A header with count = 0 or second position is unequal to 0x3c denotes
end of file.

import sys

CHR0 = 2 # i.e. first header is prefixed by 2 chr(0)

if len(sys.argv) <> 3:
 print 'Usage %s inputmbl.bin output.bin\n' % sys.argv[0]
 sys.exit(1)

f = file(sys.argv[1], 'rb')
b = f.read()
f.close()
i = b.index(chr(0) * CHR0 + chr(0) + chr(0x3c)) + CHR0 + 2
result = [chr(0)] * len(b)

k = 0
count = ord(b[i])
while count and (ord(b[i - 1]) == 0x3c):
 l = ord(b[i + 1]) + (ord(b[i + 2]) << 8)
 checkSum = 0
 for j in range(count):
 result[l + j] = b[i + 3 + j]
 checkSum += ord(b[i + 3 + j])
 expectedCheckSum = ord(b[i-2])
 receivedCheckSum = expectedCheckSum
 if k == 1:
 receivedCheckSum = previousCheckSum & 255
 elif k > 1:
 receivedCheckSum = (previousCheckSum - 1) & 255
 if receivedCheckSum <> expectedCheckSum:
 print 'Checksum error in record %i. Got %02X and expected %02X ' % (
 k, receivedCheckSum, expectedCheckSum)
 i += count + 5
 count = ord(b[i])
 k += 1
 previousCheckSum = checkSum

SIMH AltairZ80 39 of 63

i = len(result)
while result[i - 1] == chr(0):
 i -= 1

f = file(sys.argv[2], 'wb+')
for c in result[:i]:
 f.write(c)
f.close()
print '%i load records processed and %i bytes written to %s' % (k, i,
 sys.argv[2])

9 Appendix: How to bring up UCSD Pascal II.0 on SIMH
Precondition: Your current working directory contains the files mentioned below and altairz80 is available.
The files *.raw.gz are here: http://bitsavers.org/bits/UCSD_Pascal/ucsd_II.0/

U002A.5_Z80_SYS1.raw.gz U012.1_SYS_2.raw.gz ucsd ucsd.dsk

Step 1: Get U002A.5_Z80_SYS1.raw.gz and U012.1_SYS_2.raw.gz from the distribution and gunzip
“gunzip *gz”.

Step 2: Patch H command with ZAP (H command will otherwise indefinitely loop as patched command is a
jump to itself). Execute altairz80 with "altairz80 ucsd", type ^E and "G 0" at the "sim>" command prompt.
This brings you back to CP/M. At the "E>" type "ZAP" to invoke the disk editor for fixing on drive A: sector 13
on track 5 as shown below.

- Change drive to A (D command)

- Select track/Sector (S command)

- Select Track (T command) - type 5 <return>

- Select Sector (S command) - type C <return>

- Edit sector (E command)

change
000060 C2 96 1A 21 FF FF C3 AC 1A C3 E9 1A D1 2A 1A 03 |B..!C,.Ci.Q*..|

to
000060 C2 96 1A 21 FF FF C3 AC 1A C3 00 00 D1 2A 1A 03 |B..!C,.Ci.....|

- Commit change with ^W command

- Exit ZAP with Z command

- Exit simulator (^E and bye)

before
 Current Track Current Sector Current Block Current Drive

 0005 000C 000B A:

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F -----ASCII------

000000 09 29 29 EB 01 36 00 2A 94 02 19 09 C9 E1 22 90 |.))k.6.*....Ia".|

000010 02 E1 22 92 02 D1 EB 22 94 02 EB 2A 90 02 06 08 |.a"..Qk"..k*....|

000020 1A BE C2 BA 1A 23 13 10 F7 21 00 00 E5 2A 94 02 |.>B:.#..w!..e*..|

000030 EB 2A 92 02 73 23 72 C3 A4 03 D2 D3 1A 2A 94 02 |k*..s#rC$.RS.*..|

000040 11 08 00 19 5E 23 56 7B 3D B2 C2 96 1A 21 01 00 |....^#V{=2B..!..|

000050 C3 AC 1A 2A 94 02 11 0A 00 19 5E 23 56 7B 3D B2 |C,.*......^#V{=2|

000060 C2 96 1A 21 FF FF C3 AC 1A C3 E9 1A D1 2A 1A 03 |B..!C,.Ci.Q*..|

000070 EB 73 23 72 D1 2A 1C 03 EB 73 23 72 C3 B0 03 07 |ks#rQ*..ks#rC0..|

SIMH AltairZ80 40 of 63

after
 Current Track Current Sector Current Block Current Drive

 0005 000C 000B A:

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F -----ASCII------

000000 09 29 29 EB 01 36 00 2A 94 02 19 09 C9 E1 22 90 |.))k.6.*....Ia".|

000010 02 E1 22 92 02 D1 EB 22 94 02 EB 2A 90 02 06 08 |.a"..Qk"..k*....|

000020 1A BE C2 BA 1A 23 13 10 F7 21 00 00 E5 2A 94 02 |.>B:.#..w!..e*..|

000030 EB 2A 92 02 73 23 72 C3 A4 03 D2 D3 1A 2A 94 02 |k*..s#rC$.RS.*..|

000040 11 08 00 19 5E 23 56 7B 3D B2 C2 96 1A 21 01 00 |....^#V{=2B..!..|

000050 C3 AC 1A 2A 94 02 11 0A 00 19 5E 23 56 7B 3D B2 |C,.*......^#V{=2|

000060 C2 96 1A 21 FF FF C3 AC 1A C3 00 00 D1 2A 1A 03 |B..!C,.Ci.....|

000070 EB 73 23 72 D1 2A 1C 03 EB 73 23 72 C3 B0 03 07 |ks#rQ*..ks#rC0..|

Step 3: Proceed to UCSD Pascal by typing "pascal" <return> at the "E>" command prompt. Type <return>
until you see the menu bar:

Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssem, D(ebug,? [II.0]

X(ecute setup and choose Prompted mode to update parameters as follows:
Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssem, D(ebug,? [II.0]x

 Execute what file? setup

 INITIALIZING............................

 SETUP: C(HANGE T(EACH H(ELP Q(UIT [D1]

C

 CHANGE: S(INGLE) P(ROMPTED) R(ADIX)

 H(ELP) Q(UIT)

P

 FIELD NAME = BACKSPACE

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 10 8 8 BS ^H

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = EDITOR ACCEPT KEY

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 0 0 0 NUL ^@

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

26 NEW VALUE: 26

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 32 26 1A SUB ^Z

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = EDITOR ESCAPE KEY

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 33 27 1B ESC ^[

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = ERASE LINE

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 0 0 0 NUL ^@

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = ERASE SCREEN

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 0 0 0 NUL ^@

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = ERASE TO END OF LINE

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 0 0 0 NUL ^@

SIMH AltairZ80 41 of 63

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

75 NEW VALUE: 75

 OCTAL DECIMAL HEXADECIMAL ASCII

 113 75 4B K

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = ERASE TO END OF SCREEN

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 0 0 0 NUL ^@

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

74 NEW VALUE: 74

 OCTAL DECIMAL HEXADECIMAL ASCII

 112 74 4A J

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = HAS 8510A

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = HAS BYTE FLIPPED MACHINE

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = HAS CLOCK

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = HAS LOWER CASE

 CURRENT VALUE IS FALSE

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

T NEW VALUE: T

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = HAS RANDOM CURSOR ADDRESSING

 CURRENT VALUE IS FALSE

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

T NEW VALUE: T

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = HAS SLOW TERMINAL

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = HAS WORD ORIENTED MACHINE

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = KEY FOR BREAK

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 0 0 0 NUL ^@

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

3 NEW VALUE: 3

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 3 3 3 ETX ^C

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = KEY FOR FLUSH

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 6 6 6 ACK ^F

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = KEY FOR STOP

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 23 19 13 DC3 ^S

SIMH AltairZ80 42 of 63

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = KEY TO DELETE CHARACTER

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 10 8 8 BS ^H

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = KEY TO DELETE LINE

 OCTAL DECIMAL HEXADECIMAL ASCII

 177 127 7F DEL

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = KEY TO END FILE

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 3 3 3 ETX ^C

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

26 NEW VALUE: 26

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 32 26 1A SUB ^Z

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = KEY TO MOVE CURSOR DOWN

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 12 10 A LF ^J

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = KEY TO MOVE CURSOR LEFT

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 10 8 8 BS ^H

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = KEY TO MOVE CURSOR RIGHT

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 34 28 1C FS ^\

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

12 NEW VALUE: 12

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 14 12 C FF ^L

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = KEY TO MOVE CURSOR UP

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 37 31 1F US ^_

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

11 NEW VALUE: 11

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 13 11 B VT ^K

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = LEAD IN FROM KEYBOARD

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 0 0 0 NUL ^@

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = LEAD IN TO SCREEN

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 0 0 0 NUL ^@

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

27 NEW VALUE: 27

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 33 27 1B ESC ^[

N WANT TO CHANGE THIS VALUE? (Y,N,!)

SIMH AltairZ80 43 of 63

 FIELD NAME = MOVE CURSOR HOME

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 15 13 D CR ^M

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

72 NEW VALUE: 72

 OCTAL DECIMAL HEXADECIMAL ASCII

 110 72 48 H

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = MOVE CURSOR RIGHT

 OCTAL DECIMAL HEXADECIMAL ASCII

 41 33 21 !

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

68 NEW VALUE: 68

 OCTAL DECIMAL HEXADECIMAL ASCII

 104 68 44 D

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = MOVE CURSOR UP

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 0 0 0 NUL ^@

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

65 NEW VALUE: 65

 OCTAL DECIMAL HEXADECIMAL ASCII

 101 65 41 A

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = NON PRINTING CHARACTER

 OCTAL DECIMAL HEXADECIMAL ASCII

 77 63 3F ?

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[DELETE CHARACTER]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[EDITOR ACCEPT KEY]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[EDITOR ESCAPE KEY]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[ERASE LINE]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[ERASE SCREEN]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[ERASE TO END OF LINE]

 CURRENT VALUE IS FALSE

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

T NEW VALUE: T

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[ERASE TO END OF SCREEN]

 CURRENT VALUE IS FALSE

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

T NEW VALUE: T

N WANT TO CHANGE THIS VALUE? (Y,N,!)

SIMH AltairZ80 44 of 63

 FIELD NAME = PREFIXED[KEY FOR BREAK]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[KEY FOR FLUSH]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[KEY FOR STOP]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[KEY TO DELETE CHARACTER]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[KEY TO DELETE LINE]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[KEY TO END FILE]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[KEY TO MOVE CURSOR DOWN]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[KEY TO MOVE CURSOR LEFT]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[KEY TO MOVE CURSOR RIGHT]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[KEY TO MOVE CURSOR UP]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[MOVE CURSOR HOME]

 CURRENT VALUE IS FALSE

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

T NEW VALUE: T

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[MOVE CURSOR RIGHT]

 CURRENT VALUE IS FALSE

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

T NEW VALUE: T

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[MOVE CURSOR UP]

 CURRENT VALUE IS FALSE

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

T NEW VALUE: T

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = PREFIXED[NON PRINTING CHARACTER]

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = SCREEN HEIGHT

 OCTAL DECIMAL HEXADECIMAL

 30 24 18

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = SCREEN WIDTH

SIMH AltairZ80 45 of 63

 OCTAL DECIMAL HEXADECIMAL

 120 80 50

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = STUDENT

 CURRENT VALUE IS FALSE

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 FIELD NAME = VERTICAL MOVE DELAY

 OCTAL DECIMAL HEXADECIMAL

 5 5 5

Y WANT TO CHANGE THIS VALUE? (Y,N,!)

0 NEW VALUE: 0

 OCTAL DECIMAL HEXADECIMAL

 0 0 0

N WANT TO CHANGE THIS VALUE? (Y,N,!)

 CHANGE: S(INGLE) P(ROMPTED) R(ADIX)

Q H(ELP) Q(UIT)

Q SETUP: C(HANGE T(EACH H(ELP Q(UIT [D1]

D QUIT: D(ISK) OR M(EMORY) UPDATE,

 R(ETURN) H(ELP) E(XIT)

M QUIT: D(ISK) OR M(EMORY) UPDATE,

 R(ETURN) H(ELP) E(XIT)

E QUIT: D(ISK) OR M(EMORY) UPDATE,

 R(ETURN) H(ELP) E(XIT)

Step 4: Rename NEW.MISCINFO to SYSTEM.MISCINFO
Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssem, D(ebug,? [II.0]

F

 Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit [B]

L

 Dir listing of what vol ? *

 Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit [B]L

 U002A.5:

 SYSTEM.STARTUP 5 28-Feb-79

 SYSTEM.MICRO 16 9-Feb-79

 Z80T.MICRO 19 9-Feb-79

 SYSTEM.FILER 28 10-Apr-79

 SYSTEM.PASCAL 33 7-Mar-79

 SYSTEM.EDITOR 45 10-Feb-79

 SYSTEM.LINKER 22 10-Feb-79

 SYSTEM.COMPILER 68 8-Feb-79

 SYSTEM.LIBRARY 8 17-Apr-79

 SYSTEM.SYNTAX 14 2-May-79

 SAMPLEGOTO.TEXT 4 17-Nov-78

 SETUP.CODE 25 14-May-79

 READ.ME.TEXT 4 17-Apr-79

 BINDER.CODE 6 3-May-79

 NEW.MISCINFO 1 10-Feb-79

 15/15 files<listed/in-dir>, 308 blocks used, 186 unused, 186 in largest

 Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit [B]

C

 Change what file ? NEW.MISCINFO

 Change to what ? SYSTEM.MISCINFO

Step 5: Delete SYSTEM.STARTUP (R command in Filer)

SIMH AltairZ80 46 of 63

Step 6: Set date with D command in Filer

Step 7: Create new goto file for VT100 (VT100GOTO.TEXT)

(*$U-*)

PROGRAM DUMMY;

(* Direct cursor addressing for VT100 terminal *)

(* '[' after escape is done by BIOS - trick from Udo Munk *)

PROCEDURE FGOTOXY(X,Y:INTEGER);

BEGIN

 IF X<0 THEN X:=0;

 IF X>79 THEN X:=79;

 IF Y<0 THEN Y:=0;

 IF Y>23 THEN Y:=23;

 WRITE (CHR(27),Y+1,';',X+1,'H')

END;

BEGIN

END.

Take SAMPLEGOTO.TEXT as basis and modify using the editor. You can delete a complete line by moving
the cursor to the line (^J for down, ^K for up) and then do D and <return> and ^Z.

Step 8: Compile result and save codefile (using Filer Save command).

Step 9: Update SYSTEM.PASCAL by X)cuting BINDER. When prompted for the file with the procedure type
in VT100GOTO. The change takes effect after restart: Type H at top level and "pascal" at E> prompt.

SIMH AltairZ80 47 of 63

10 Vector Graphic, Inc. Simulation
Howard M. Harte, hharte@hartetec.com

10.1 Overview
Vector Graphic is a early microcomputer from the mid 1970's, based on the S-100 bus using the Z80
microprocessor. There were several Vector Graphic models produced. Although primarily used with the
CP/M operating system, it ran several others including OASIS, Micropolis Disk Operating System (MDOS),
and Micropolis Z80 Operating System (MZOS).

Early Vector Graphic models used the Micropolis floppy disk controller and Micropolis floppy disk drives.
Later models were designed with the integrated Floppy Drive/Hard Drive controller and used Tandon floppy
drives. Almost all used unusual 100 track per inch 5.25" floppy drives and 16 sector 5.25" hard sector media.
Some models included 8" floppy drives and hard disk drives.

Vector Graphic computers had many innovations such as the Flashwriter integrated video and keyboard
controller. Vector Graphic is commonly known for their MEMORITE word processing application. When
combined with the Flashwriter, the Vector Graphic MEMORITE software gave low cost word processing
capability which had previously only been available with dedicated word processors.

Vector Graphic has a small but active user community. The following are links to resources and information
about the Vector Graphic computer systems:

History and Background

http://en.wikipedia.org/wiki/Vector_Graphic

http://old-computers.com/museum/company.asp?st=1&l=V

http://www.classiccmp.org/dunfield/s100/index.htm#v1p

http://www.vintage-computer.com/vector1plus.shtml

http://retrotechnology.com/herbs_stuff/d_vector.html

http://www.vectorgraphics.org.uk/

 Mailing List

http://h-net.msu.edu/cgi-bin/wa?A0=VECTOR-GRAPHIC

 Documentation

http://www.hartetechnologies.com/manuals/Vector%20Graphics/

http://maben.homeip.net/static/S100/vector/index.html

Documentation / Disk Images

http://vector-archive.org

The Vector Graphic simulation was realized by making several architectural modifications to support
additional disk controllers and the Flashwriter2 video card. The architectural modifications include the ability
to install and uninstall devices in the simulator’s memory and I/O map at runtime, and pave the way for
further extension of SIMH/AltairZ80 to support other hardware with a minimum of integration effort.

These additional devices specific to the Vector Graphic systems include:

MDSK – Micropolis FD Controller Board, memory mapped to 0xF800-0xFBFF

VFDHD – Vector HD-FD Controller Board, I/O Mapped to 0xC0-0xC3

SIMH AltairZ80 48 of 63

FWII – Flashwriter 2 Video Card, memory mapped to 0xF000-0xF800

These devices can be enabled/disabled (installed/uninstalled) from the memory map with:

sim> set <device> ena – to enable the device.

sim> set <device> dis – to disable the device.

If there is an I/O or memory map conflict when enabling a device, the conflicting device must first be
disabled.

In addition to the new devices added to SIMH/AltairZ80, additional ROM images are provided for the Vector
4.0C Monitor and the Vector 4.3 Monitor. The 4.0C Monitor uses the simulated serial port for I/O, and the
4.3 Monitor uses the Flashwriter2 video card for output and a simulated parallel keyboard for input. One of
these monitors should be loaded at address 0xE000, depending on the simulated system configuration.

Generally, when using the HD-FD disk controller, you will need to use Monitor 4.3, since it supports booting
from this controller. When using the Micropolis FD Controller board, you should use the 4.0C Monitor.

The simulator can be configured for a 48K Vector MZ or a 56K Vector MZ. Some boot disk images require a
48K configuration, and some require a 56K configuration. In the 48K configuration on a real Vector MZ
system, an older version of the monitor ROM was at address 0xC000. Since the image for this ROM has
not been obtained, a small “helper” ROM is loaded at address 0xC000, in addition to the 4.0C Monitor at
0xE000. The “helper” ROM redirects calls to perform terminal I/O to the corresponding entry points in the
4.0C monitor.

There are several configuration files that configure SIMH to simulate various Vector Graphic systems.
These configuration files are the definitive reference for proper simulator configuration, and should be
preferred over the following descriptions if there is any discrepancy. These configuration files are:

vgmz48k Vector 48K MZ with Micropolis FD Controller

vgmz56k Vector 56K MZ with Micropolis FD Controller

vgfdhd Vector 56K System with HD-FD Disk Controller

Here are some sample configurations for 48K, 56K, and HD-FD Systems:

10.2 48K Vector MZ
sim> load MON40C.BIN e000 - load Vector 4.0C Monitor

sim> load MONC000.BIN c000 - load “Helper” ROM at 0xC000

sim> set mdsk membase=D800 - set Micropolis disk controller base address

sim> set mdsk enabled - enable Micropolis disk controller

sim> attach mfdc0 VG02.VGI - attach disk to MDSK0 drive

When booting the 48K configuration, type:
sim> g e000

and at the Mon> prompt, you can boot from the disk controller by doing G D800.

SIMH AltairZ80 49 of 63

10.3 56K Vector MZ
sim> load MON40C.BIN e000 - load Vector 4.0C Monitor

sim> set mdsk enabled - enable Micropolis disk controller

sim> attach mfdc0 VG00.VGI - attach disk to MDSK0 drive

When booting the 56K configuration, type:

sim> g e000

and at the Mon> prompt, you can boot from the disk controller by using the B (boot) command.

10.4 56K Vector with HD-FD Controller
sim> set vfdhd enabled - enable HD-FD controller

sim> load MON43B.BIN e000 - load Vector 4.3 Monitor

sim> att fwii0 f000 - enable the Flashwriter2 at F000.

sim> set telnet 23 - set up telnet port for Flashwriter2

sim> attach vfdhd1 VGBOOT.VGI - attach disk to VFDHD1 drive

When booting the 56K HD-FD configuration, type:

sim> g e000

You will then need to start a Telnet session to the simulator to use the simulated Flashwriter2. From a
console window, do telnet localhost 23, or use your favorite telnet client, such as “Putty” under
Windows. In the Telnet window, the 4.3 Monitor should sign on and at the Mon> prompt, you can boot from
the disk controller by using the B (boot) command.

SIMH AltairZ80 50 of 63

10.5 Notes on Simulated Hardware
The Vector HD-FD Controller supports four drives, one of which may be a Winchester (hard disk) drive. For
the included VGBOOT.VGI disk image, CP/M is configured such that the VFDHD0 is drive “B” and VFDHD1
is drive “A.” VFDHD2 is drive “C” and VFDHD3 is drive “D.” The simulation assumes that whatever image is
attached to VFDHD0 is a “Hard disk” image, so drive “B” using the VGBOOT.VGI disk image is not
supported.

10.6 Notes on the Vector Graphic Disk Image (VGI) File Format
The Vector Graphic Disk Image (VGI) File Format uses a 275-byte sector format. This sector includes 256
bytes of User Data, and various other fields (metadata) used by controller hardware and the operating
system running on the simulator.
The 275-byte sector format is as follows:

SYNC TRACK SECTOR UNUSED USER
DATA

CHKSUM ECC ECC_VALID

1 1 1 10 256 1 4 1

SYNC One byte, always 0xFF.

TRACK Track number that this sector belongs to.

SECTOR Sector number

UNUSED Used by the operating system when running Micropolis DOS (MDOS) to
store the load address and record length for the sector. This field is not
used by CP/M.

USER DATA 256-bytes of user data

CHECKSUM An operating system dependent checksum.

ECC Four bytes of ECC code, generated and checked by the HD-FD Controller,
but not used by the Micropolis FD Controller

ECC_VALID One byte that contains 0xAA if the ECC field is valid. Disks written by the
HD-FD controller typically have this field set to 0xAA to indicate that the
ECC field should contain valid data. For disk images created by the
Micropolis FD controller, this field is 0x00, since ECC is not supported. For
disk images that were generated using the CPT program, this field will be
0x00 because the ECC bytes were not recoverable from the original disk.
For disk images originally written with the HD-FD Controller, and imaged
with Catweasel/Vector Graphic (CWVG) this field will be set to whatever it
was set to on the original disk. This should be 0xAA.

SIMH AltairZ80 51 of 63

11 IMSAI 8080 Simulation
IMSAI FIF Disk Controller support was added by Ernie Price.

11.1 Overview

The IMSAI FIF Disk Controller consists of an IFM (Interface Master Board) and a FIB (Floppy Disk Interface
board) which interface the disk to the computer. The combination of FIB and IFM boards create an
intelligent controller including DMA transfer, which permits the computer to perform other tasks during disk
operations.

The FIF simulation can control up to eight disk drives. Commands include Read Clock and Data Bits, Write
Sector, Read Sector, Verify Sector, Format Track, Write Deleted Data Sector Mark, Write Protect, Write
Enable and Restore Drive. Logical and physical track addresses may be different. Cyclic redundancy
checks are performed automatically. When an error is detected in reading or writing, the logic automatically
retries up to 10 times.

Using the IMSAI FIF Controller, it is possible to run IMDOS 2.05 on the simulator.

Additional devices include:

FIF – IMSAI FIF Disk Controller, I/O Mapped to 0xFD

Since the IMSAI FIF and AltairZ80 HDSK devices both use I/O port 0xFD, the HDSK must be disabled
before enabling the FIF:

sim> set hdsk dis – disable the AltairZ80 HDSK device.

sim> set fif ena – enable the IMSAI FIF device.

There is a configuration file that configures SIMH to simulate an IMSAI 8080 with FIF Disk Controller. This
configuration file is the definitive reference for proper simulator configuration, and should be preferred over
the following description if there is any discrepancy. This configuration file is:

imdos IMSAI 8080 with FIF Disk Controller

11.2 IMSAI 8080 with FIF Disk Controller
sim> set hdsk dis - disable AltairZ80 HDSK Controller

sim> set fif ena - enable IMSAI FIF Controller

sim> load IMSAI.BIN d800 - load IMSAI Monitor at 0xD800

sim> attach fif0 IMDOS_A.DSK - attach disk to FIF0 drive

When booting the IMSAI 8080 with FIF Disk Controller, type:

sim> g d800

This will start the IMSAI Monitor, which will automatically boot from FIF0 if a valid boot disk image is
attached.

SIMH AltairZ80 52 of 63

12 North Star Horizon Simulation
North Star Horizon MDS-AD Disk Controller support was added by Howard M. Harte, hharte@hartetec.com.

12.1 Overview

The North Star MDS-AD disk controller is a double-sided, double-density disk controller supporting 48-TPI
5.25” Media, with 35 tracks, and 10 hard-sectors per track.

Using the North Star MDS-AD disk controller, it is possible to run CP/M 2.2 and North Star DOS on the
simulator.

* * * NOTE: The MDS-AD Controller only supports Double-Density disks at this time * * *

Additional devices include:

MDSAD – North Star MDS-AD Disk Controller, Memory Mapped to 0xE800-0xEBFF.

There is a configuration file that configures SIMH to simulate a North Star Horizon System with an MDS-AD
Disk Controller. This configuration file is the definitive reference for proper simulator configuration, and
should be preferred over the following description if there is any discrepancy. This configuration file is:

nshrz North Star Horizon with MDS-AD Disk Controller

12.2 North Star Horizon with MDS-AD Disk Controller
sim> set mdsad ena - enable North Star MDS-AD Controller

sim> attach mdsad0 D01B01.NSI - attach CP/M boot disk to MDSAD0 drive

When booting the North Star Horizon, type:

sim> boot mdsad0

This will start the CPU at 0xE800, which is the boot ROM for the MDS-AD disk controller.

SIMH AltairZ80 53 of 63

13 Compupro 8-16 Simulation
Compupro Controller support was added by Howard M. Harte, hharte@hartetec.com. The 8086 simulation
was added by Peter Schorn.

13.1 Overview

The Compupro 8-16 was a fairly advanced IEEE-696 bus based system that included a dual CPU card
containing Intel 8085 and 8088 processors. This processor card was capable of switching between CPUs at
runtime, and this allowed the user to run CP/M-80 as well as CP/M-86. In the latest version of CP/M-80
released by Viasyn (who had acquired Compupro by that time) uses the 8085 CPU for running CP/M, but
offloads some of the memory operations to the 8088 CPU because of its ability to operate faster, and more
easily address memory above 64K.

Additional devices include:

DISK1A – Compupro DISK1A High Performance Floppy Disk Controller.

DISK2 – Compupro DISK2 Hard Disk Controller.

DISK3 – Viasyn DISK3 Hard Disk Controller for ST-506 Drives.

SELCHAN – Compupro Selector Channel DMA Controller.

MDRIVEH – Compupro MDRIVE/H RAM Disk (up to 4MB.)

SS1 – Compupro System Support 1 (experimental and incomplete simulation.)

There are configuration files that configure SIMH to simulate a Compupro 8-16, with various attached
controllers to run CP/M-80 and CP/M-86. These configuration files are:

ccpm22 Compupro 8-16 CP/M-80 2.2

ccpm86 Compupro 8-16 CP/M-86

ccpm22q Compupro 8-16 CP/M-80 2.2Q (latest Viasyn version)

13.2 DISK1A High Performance Floppy Disk Controller
The DISK1A High Performance Floppy Disk Controller is based on the Intel i8272 Floppy Disk Controller
chip, which is the same as an NEC765 floppy controller. The implementation of the DISK1A uses a generic
i8272 controller core with a DISK1A-specific wrapper to implement the Compupro DISK1A-specific features.

The i8272 controller core simulation utilizes the ImageDisk (IMD) file format for accessing simulated floppy
disks.

The DISK1A simulation also includes the Compupro bootstrap ROM, which contains bootloaders for 8085,
8088, and 68000 CPUs.

Tony Nicholson provided several enhancements to the DISK1A controller simulation, including variable
sector size support, as well as extended addressing support for DMA data transfer.

13.2.1 DISK1A Controller Parameters
The DISK1A controller supports several parameters which can be configured by the simulator:

ROM – Enable bootstrap ROM at 0000-01FFh.

SIMH AltairZ80 54 of 63

NOROM – Disable bootstrap ROM.

DEBUG – enable debug tracing, useful for debugging software. One or more debug levels may be selected
at any given time. Several debug tracing levels are provided:

• ERROR – Error messages, these are bugs in the simulation or in the way a program running on the
simulator accesses the controller. This message level is on by default.

• SEEK – Seek messages, related to head positioning.

• CMD – Disk controller commands.

• RDDATA – Read Data messaging

• WRDATA – Write Data messaging

• STATUS – Status register reading

• VERBOSE – Extra verbosity for debugging.

NODEBUG – turn off one or more debug message levels.

The DISK1A supports four drives, labeled DISK1A0 through DISK1A3. If a drive is attached to a non-
existent image file, the image file will be created, and the user will be asked for a comment description of the
disk. SIMH adds its own IMD header to the comment field, along with information about the version of the
controller core (in this case i8272) as well as the SIM_IMD module, to help facilitate debugging. The
SIM_IMD module will automatically format the new disk image in IBM 3740 Single-Sided, Single-Density
format. If the user wishes to use the disk in another format, then it should be reformatted using the
CompuPro format program on either CP/M-80 or CP/M-86.

13.2.2 DISK1A Controller Limitations
The DISK1A controller and the underlying i8272 controller core only support DMA-mode operation at
present. There is no support for polled-mode I/O access for reading/writing data. While the DISK1A
simulation is believed to be very accurate in normal operation, the error handling and bad data reporting
from the SIM_IMD module are not well implemented/tested. For example, if a disk image contains a CRC
error on one of the sectors, this may not be propagated up to the DISK1A status registers. This should not
be an issue for disks created with SIMH, because there is no such thing as a CRC error in this case. But,
for images that were read from a real floppy using IMD, a sector containing bad data might be reported as
good by the simulation.

13.3 DISK2 Compupro Hard Disk Controller
The DISK2 Hard Disk Controller provides 20MB of fixed-disk storage, and supports four hard disk drives.
Just like a real DISK2 controller, it needs to be used in conjunction with the Compupro Selector Channel
DMA controller.

13.3.1 DISK2 Controller Parameters
The DISK2 controller supports several parameters which can be configured by the simulator:

DEBUG – enable debug tracing, useful for debugging software. One or more debug levels may be selected
at any given time. Several debug tracing levels are provided:

• ERROR – Error messages, these are bugs in the simulation or in the way a program running on the
simulator accesses the controller. This message level is on by default.

• SEEK – Seek messages, related to head positioning.

• CMD – Disk controller commands.

• RDDATA – Read Data messaging

SIMH AltairZ80 55 of 63

• WRDATA – Write Data messaging

• STATUS – Status register reading

• VERBOSE – Extra verbosity for debugging.

NODEBUG – turn off one or more debug message levels.

13.3.2 DISK2 Controller Configuration Registers
The DISK2 controller has several configuration registers that can be examined and deposited by the
simulator. The defaults are configured for a standard 20MB hard disk. These registers are:

NTRACKS – Number of tracks on the simulated hard disks.

NHEADS – Number of heads on the simulated hard disks.

NSECTORS – Number of sectors on the simulated hard disks.

SECTSIZE – Sector size on the simulated hard disks.

The DISK2 supports four drives, labeled DISK20 through DISK23. If a drive is attached to a non-existent
image file, the image file will be created. A newly created disk image should be formatted with the
CompuPro DISK2.COM command.

13.4 SELCHAN Compupro Selector Channel Controller
The Compupro Selector Channel DMA controller provides DMA support for the Compupro DISK2 Hard Disk
Controller.

13.4.1 DISK2 Controller Parameters
The DISK2 controller supports several parameters which can be configured by the simulator:

DEBUG – enable debug tracing, useful for debugging software. One or more debug levels may be selected
at any given time. Several debug tracing levels are provided:

• ERROR – Error messages, these are bugs in the simulation or in the way a program running on the
simulator accesses the controller. This message level is on by default.

• DMA – DMA Transfer Messages.

• VERBOSE – Extra verbosity for debugging.

NODEBUG – turn off one or more debug message levels.

Tony Nicholson added extended addressing DMA support to the SELCHAN module.

13.5 DISK3 Viasyn ST-506 Hard Disk Controller
The DISK3 Hard Disk Controller is an advanced DMA-based hard disk controller that uses linked-list
descriptors to send commands and transfer data between the host CPU and the disk controller.

13.5.1 DISK3 Controller Parameters
The DISK3 controller supports several parameters which can be configured by the simulator:

DEBUG – enable debug tracing, useful for debugging software. One or more debug levels may be selected
at any given time. Several debug tracing levels are provided:

• ERROR – Error messages, these are bugs in the simulation or in the way a program running on the
simulator accesses the controller. This message level is on by default.

SIMH AltairZ80 56 of 63

• SEEK – Seek messages, related to head positioning.

• CMD – Disk controller commands.

• RDDATA – Read Data messaging

• WRDATA – Write Data messaging

• STATUS – Status register reading

• VERBOSE – Extra verbosity for debugging.

NODEBUG – turn off one or more debug message levels.

13.5.2 DISK3 Controller Configuration Registers
The DISK3 controller has several configuration registers that can be examined and deposited by the
simulator. The defaults are configured for a standard 20MB hard disk. These registers are:

NTRACKS – Number of tracks on the simulated hard disks.

NHEADS – Number of heads on the simulated hard disks.

NSECTORS – Number of sectors on the simulated hard disks.

SECTSIZE – Sector size on the simulated hard disks.

The DISK3 supports four drives, labeled DISK30 through DISK33. If a drive is attached to a non-existent
image file, the image file will be created. A newly created disk image should be formatted with the
CompuPro DISK3.COM command.

13.5.3 DISK3 Controller Limitations
The DISK3 controller has been tested with the Compupro DISK3.COM diagnostic utility, but has not been
tested with CP/M.

SIMH AltairZ80 57 of 63

14 Cromemco 4/16/64FDC and CCS-2422 FDC Simulation
Cromemco 4/16/64FDC (CROMFDC) Floppy Controller support was added by Howard M. Harte,
hharte@hartetec.com.

14.1 Overview
The Cromemco 4/16/64FDC disk controllers are a family of floppy disk controllers for Cromemco systems.
The controller is based on the Western Digital WD179x series of floppy controller chips. The implementation
of the DISK1A uses a generic WD179x controller core with a Cromemco-specific wrapper to implement the
Cromemco-specific features.

The WD179x controller core simulation utilizes the ImageDisk (IMD) file format for accessing simulated
floppy disks.

The Cromemco simulation also includes the Cromemco RDOS 2.52 and RDOS 3.12 boot ROMs.

Additional devices include:

CROMFDC – Cromemco 4/16/64FDC Floppy Disk Controller.

14.1.1 CROMFDC Controller Parameters
The CROMFDC controller supports several parameters which can be configured by the simulator:

ROM – Enable RDOS ROM at C000-DFFFh.

NOROM – Disable RDOS ROM.

DEBUG – enable debug tracing, useful for debugging software. One or more debug levels may be selected
at any given time. Several debug tracing levels are provided:

• ERROR – Error messages, these are bugs in the simulation or in the way a program running on the
simulator accesses the controller. This message level is on by default.

• SEEK – Seek messages, related to head positioning.

• CMD – Disk controller commands.

• RDDATA – Read Data messaging

• WRDATA – Write Data messaging

• STATUS – Status register reading

• VERBOSE – Extra verbosity for debugging.

• DRIVE – Messaging specific to drive, i.e.: Motor on/off, side selection.

• IRQ – Interrupt debugging

NODEBUG – turn off one or more debug message levels.

14.1.2 CROMFDC Controller Configuration Registers
The CROMFDC controller has several configuration registers that can be examined and deposited by the
simulator. The defaults are configured for a standard 20MB hard disk. These registers are:

DIPSW – 5-position DIP switch on 64FDC card.

BOOTSTRAP – 0 for RDOS 2.52, 1 for RDOS 3.12.

FDCTYPE – CROMFDC Type: Set to 4, 16, 64 for Cromemco FDC, or 50 for CCS-2422 FDC.

BOOT – BOOT jumper setting, default is 1 (auto-boot.)

SIMH AltairZ80 58 of 63

INHINIT – Inhibit Init (Format) switch, default is 0 (not inhibited.)

The CROMFDC supports four drives, labeled CROMFDC0 through CROMFDC3. If a drive is attached to a
non-existent image file, the image file will be created, and the user will be asked for a comment description
of the disk. SIMH adds its own IMD header to the comment field, along with information about the version of
the controller core (in this case WD179x) as well as the SIM_IMD module, to help facilitate debugging. The
SIM_IMD module will automatically format the new disk image in IBM 3740 Single-Sided, Single-Density
format. If the user wishes to use the disk in another format, then it should be reformatted using the
Cromemco INIT.COM program under Cromemco DOS (CDOS), or using the INITLARG.COM program
under 86-DOS.

14.1.3 CROMFDC Controller Limitations
The CROMFDC controller and the underlying WD179x controller core only support polled I/O mode
operation at present. There is no support for DMA access for reading/writing data. The CROMFDC
interrupt support is not fully implemented/tested; however, none of the operating systems that use the
CROMFDC controller (CDOS, CP/M 2.2, 86-DOS) seem to use this mode. Z80 Cromix does not boot in
simulation, but probably not due to the lack of disk controller interrupts.

SIMH AltairZ80 59 of 63

15 Advanced Digital Corporation Super -Six Simulation
ADC Super-Six Single-Board Computer support was added by Howard M. Harte, hharte@hartetec.com.

15.1 Overview
The Advanced Digital Corporation Super-Six SBC is a Z80-based single board computer on an S-100 bus
card. It has 128K of RAM, and a WD179x-based floppy disk controller.

Additional devices include:

ADCS6 – ADC Super-Six SBC.

15.1.1 ADCS6 SBC Parameters
The ADCS6 SBC supports several parameters which can be configured by the simulator:

ROM – Enable RDOS ROM at C000-DFFFh.

NOROM – Disable RDOS ROM.

DEBUG – enable debug tracing, useful for debugging software. One or more debug levels may be selected
at any given time. Several debug tracing levels are provided:

• ERROR – Error messages, these are bugs in the simulation or in the way a program running on the
simulator accesses the controller. This message level is on by default.

• SEEK – Seek messages, related to head positioning.

• CMD – Disk controller commands.

• RDDATA – Read Data messaging

• WRDATA – Write Data messaging

• STATUS – Status register reading

• VERBOSE – Extra verbosity for debugging.

• DRIVE – Messaging specific to drive, i.e.: Motor on/off, side selection.

• IRQ – Interrupt debugging

• DMA – Z80-DMA register debugging

NODEBUG – turn off one or more debug message levels.

15.1.2 ADCS6 SBC Configuration Registers
The CROMFDC controller has several configuration registers that can be examined and deposited by the
simulator. The defaults are configured for a standard 20MB hard disk. These registers are:

J7 – Jumper block J7 setting, see ADC Manual for details.

The ADCS6 supports four drives, labeled ADCS60 through ADCS63. If a drive is attached to a non-existent
image file, the image file will be created, and the user will be asked for a comment description of the disk.
SIMH adds its own IMD header to the comment field, along with information about the version of the
controller core (in this case WD179x) as well as the SIM_IMD module, to help facilitate debugging. The
SIM_IMD module will automatically format the new disk image in IBM 3740 Single-Sided, Single-Density
format. If the user wishes to use the disk in another format, then it should be reformatted using the
FMT8.COM program under CP/M 2.2.

SIMH AltairZ80 60 of 63

15.1.3 ADCS6 SBC Limitations
The ADCS6 simulation does not support the Z80-DMA, CTC, parallel ports, or interrupt-driven operation.
The ADCS6 bank switching and ROM are not implemented fully.

SIMH AltairZ80 61 of 63

16 N8VEM Single Board Computer Simulation
N8VEM Single Board Computer support was added by Howard M. Harte, hharte@hartetec.com.

16.1 Overview
The N8VEM Single Board Computer is a homebrew Z80 system designed by Andrew Lynch. This SBC can
has 1MB of EPROM, 512KB of RAM, and can run CP/M 2.2. More details about the N8VEM are on the
following newsgroup:

http://groups.google.com/group/n8vem

Additional devices include:

N8VEM – N8VEM Single-Board Computer.

16.1.1 N8VEM SBC Parameters
The N8VEM SBC supports several parameters which can be configured by the simulator:

DEBUG – enable debug tracing, useful for debugging software. One or more debug levels may be selected
at any given time. Several debug tracing levels are provided:

• ERROR – Error messages. This message level is on by default.

• PIO – 8255 Parallel I/O port messages.

• UART – Serial port messages.

• RTC – Real-Time Clock messages.

• ROM – ROM messages.

• VERBOSE – Extra verbosity for debugging.

NODEBUG – turn off one or more debug message levels.

16.1.2 N8VEM SBC Configuration Registers
The N8VEM SBC has several configuration registers that can be examined and deposited by the simulator.
These registers are:

SAVEROM – When set to 1, the ROM data will be saved to an attached file.

SAVERAM – When set to 1, the RAM data will be saved to an attached file.

PIO1A – 8255 PIO1A port.

PIO1B – 8255 PIO1A port

PIO1C – 8255 PIO1A port

PIOCTRL – 8255 PIO Control register

The N8VEM supports two storage devices: N8VEM0 and N8VEM1.

N8VEM0 saves data from the ROM to a raw binary file when SAVEROM is set to 1, and the unit is
detached. Since the N8VEM has 1MB of ROM, the file created will be 1048576 bytes in length. This file
can then be burned into an EPROM for use with the actual N8VEM hardware.

N8VEM1 saves data from the RAM to a raw binary file when SAVERAM is set to 1, and the unit is detached.
Since the N8VEM has 512KB of RAM, the file created will be 524288 bytes in length. This file is useful as a
“core dump” to examine the state of a running system. It can also serve to model persistent storage for the
N8VEM RAM drive, in case an 512KB NVRAM is used in place of the 512KB SRAM on the N8VEM.

SIMH AltairZ80 62 of 63

16.1.3 N8VEM SBC Limitations
The DS1302 Real-Time Clock on the N8VEM is not supported by the simulation. The 8255 PIO ports serve
no real purpose, other than that the values written to them can be read by the simulator.

SIMH AltairZ80 63 of 63

17 ImageDisk (IMD) Disk Image Support in SIMH
ImageDisk (IMD) disk image file support for SIMH was added by Howard M. Harte, hharte@hartetec.com.

17.1 Overview
The ImageDisk (IMD) file format is a portable format which includes all metadata required to accurately
describe a soft-sectored floppy disk. The IMD file format was developed by Dave Dunfield, along with a set
of ImageDisk utilities for creating ImageDisk disks from raw binary files and from real floppy disks. In
addition, IMD disk images can be written back to real floppies for use on actual hardware. SIMH support for
ImageDisk is provided by the SIM_IMD module written by Howard M. Harte. The SIM_IMD module provides
functions for creating, opening, reading, writing, formatting, and closing IMD files. The i8272 and WD179x
floppy controller core simulations leverage the SIM_IMD module for low-level disk access.

17.2 References
More information and support for ImageDisk, including a detailed description of the IMD file format, and
utilities for creating and manipulating IMD files can be found on Dave Dunfield’s website.

18 CP/M-68K Simulation
Based on on work by David W. Schultz (http://home.earthlink.net/~david.schultz) you can run Digital
Research CP/M-68K as follows. Unpack cpm68k.zip and issue the command altairz80 cpm68k or the
following commands at the simh prompt:

sim> set cpu m68k

sim> attach hdsk2 diskc.cpm.fs

sim> boot hdsk2

CP/M-68K(tm) Version 1.2 03/20/84

Copyright (c) 1984 Digital Research, Inc.

CP/M-68K BIOS Version 1.0

Simulated system of April 2014

TPA =16251 K

C>AUTOST.SUB

AUTOST.SUB?

C>

Typing “bbye” at the “C>” command prompt brings you back to SIMH.

