blob: af0e1555ab4f469687678fe5be24727d19fae5cc [file] [log] [blame] [raw]
/* pdp10_xtnd.c: PDP-10 extended instruction simulator
Copyright (c) 1993-2005, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
12-May-01 RMS Fixed compiler warning in xlate
Instructions handled in this module:
MOVSLJ move string left justified
MOVSO move string offset
MOVST move string translated
MOVSRJ move string right justified
CMPSL compare string, skip on less
CMPSE compare string, skip on equal
CMPSLE compare string, skip on less or equal
CMPSGE compare string, skip on greater or equal
CMPSN compare string, skip on unequal
CMPSG compare string, skip on greater
CVTDBO convert decimal to binary offset
CVTDBT convert decimal to binary translated
CVTBDO convert binary to decimal offset
CVTBDT convert binary to decimal translated
EDIT edit
The PDP-10 extended instructions deal with non-binary data types,
particularly byte strings and decimal strings. (In the KL10, the
extended instructions include G floating support as well.) They
are very complicated microcoded subroutines that can potentially
run for a very long time. Accordingly, the instructions must test
for interrupts as well as page faults, and be prepared to restart
from either.
In general, the simulator attempts to keep the AC block up to date,
so that page fails and interrupts can be taken directly at any point.
If the AC block is not up to date, memory accessibility must be tested
before the actual read or write is done.
The extended instruction routine returns a status code as follows:
XT_NOSK no skip completion
XT_SKIP skip completion
XT_MUUO invalid extended instruction
*/
#include "pdp10_defs.h"
#include <setjmp.h>
#define MM_XSRC (pflgs & XSRC_PXCT)
#define MM_XDST (pflgs & XDST_PXCT)
#define MM_EA_XSRC ((pflgs & EA_PXCT) && MM_XSRC)
#define MM_EA_XDST ((pflgs & EA_PXCT) && MM_XDST)
#define XT_CMPSL 001 /* opcodes */
#define XT_CMPSE 002
#define XT_CMPSLE 003
#define XT_EDIT 004
#define XT_CMPSGE 005
#define XT_CMPSN 006
#define XT_CMPSG 007
#define XT_CVTDBO 010
#define XT_CVTDBT 011
#define XT_CVTBDO 012
#define XT_CVTBDT 013
#define XT_MOVSO 014
#define XT_MOVST 015
#define XT_MOVSLJ 016
#define XT_MOVSRJ 017
/* Translation control */
#define XT_LFLG 0400000000000 /* L flag */
#define XT_SFLG 0400000000000 /* S flag */
#define XT_NFLG 0200000000000 /* N flag */
#define XT_MFLG 0100000000000 /* M flag */
/* Translation table */
#define XT_V_CODE 15 /* translation op */
#define XT_M_CODE 07
#define XT_BYMASK 07777 /* byte mask */
#define XT_DGMASK 017 /* digit mask */
#define XT_GETCODE(x) ((int32) (((x) >> XT_V_CODE) & XT_M_CODE))
/* AC masks */
#define XLNTMASK 0000777777777 /* length */
#define XFLGMASK 0700000000000 /* flags */
#define XT_MBZ 0777000000000 /* must be zero */
#define XT_MBZE 0047777000000 /* must be zero, edit */
/* Register change log */
#define XT_N_RLOG 5 /* entry width */
#define XT_M_RLOG ((1 << XT_N_RLOG) - 1) /* entry mask */
#define XT_O_RLOG 1 /* entry offset */
#define XT_INSRLOG(x,v) v = ((v << XT_N_RLOG) | (((x) + XT_O_RLOG) & XT_M_RLOG))
#define XT_REMRLOG(x,v) x = (v & XT_M_RLOG) - XT_O_RLOG; \
v = v >> XT_N_RLOG
/* Edit */
#define ED_V_PBYN 30 /* pattern byte # */
#define ED_M_PBYN 03
#define ED_PBYNO 0040000000000 /* overflow bit */
#define ED_GETPBYN(x) ((int32) (((x) >> ED_V_PBYN) & ED_M_PBYN))
#define ED_V_POPC 6 /* pattern byte opcode */
#define ED_M_PAT 0777 /* pattern byte mask */
#define ED_M_NUM 0077 /* number for msg, etc */
#define ED_PBYTE(x,y) ((int32) (((x) >> (27 - (ED_GETPBYN (y) * 9))) & ED_M_PAT))
#define ED_STOP 0000 /* stop */
#define ED_SELECT 0001 /* select source */
#define ED_SIGST 0002 /* start significance */
#define ED_FLDSEP 0003 /* field separator */
#define ED_EXCHMD 0004 /* exchange mark, dst */
#define ED_MESSAG 0100 /* message */
#define ED_SKPM 0500 /* skip if M */
#define ED_SKPN 0600 /* skip if N */
#define ED_SKPA 0700 /* skip always */
extern d10 *ac_cur; /* current AC block */
extern const d10 bytemask[64];
extern int32 flags;
extern int32 rlog;
extern jmp_buf save_env;
extern d10 Read (int32 ea, int32 prv);
extern void Write (int32 ea, d10 val, int32 prv);
extern a10 calc_ea (d10 inst, int32 prv);
extern int32 test_int (void);
d10 incbp (d10 bp);
d10 incloadbp (int32 ac, int32 pflgs);
void incstorebp (d10 val, int32 ac, int32 pflgs);
d10 xlate (d10 by, a10 tblad, d10 *xflgs, int32 pflgs);
void filldst (d10 fill, int32 ac, d10 cnt, int32 pflgs);
static const d10 pwrs10[23][2] = {
0, 0,
0, 1,
0, 10,
0, 100,
0, 1000,
0, 10000,
0, 100000,
0, 1000000,
0, 10000000,
0, 100000000,
0, 1000000000,
0, 10000000000,
2, 31280523264,
29, 3567587328,
291, 1316134912,
2910, 13161349120,
29103, 28534276096,
291038, 10464854016,
2910383, 1569325056,
29103830, 15693250560,
291038304, 19493552128,
2910383045, 23136829440,
29103830456, 25209864192
};
int xtend (int32 ac, int32 ea, int32 pflgs)
{
d10 b1, b2, ppi;
d10 xinst, xoff, digit, f1, f2, rs[2];
d10 xflgs = 0;
a10 e1, entad;
int32 p1 = ADDAC (ac, 1);
int32 p3 = ADDAC (ac, 3);
int32 p4 = ADDAC (ac, 4);
int32 flg, i, s2, t, pp, pat, xop, xac, ret;
xinst = Read (ea, MM_OPND); /* get extended instr */
xop = GET_OP (xinst); /* get opcode */
xac = GET_AC (xinst); /* get AC */
if (xac || (xop == 0) || (xop > XT_MOVSRJ)) return XT_MUUO;
rlog = 0; /* clear log */
switch (xop) { /* case on opcode */
/* String compares - checked against KS10 ucode
If both strings are zero length, they are considered equal.
Both source and destination lengths are MBZ checked.
AC = source1 length
AC + 1 = source1 byte pointer
AC + 3 = source2 length
AC + 4 = source2 byte pointer
*/
case XT_CMPSL: /* CMPSL */
case XT_CMPSE: /* CMPSE */
case XT_CMPSLE: /* CMPSLE */
case XT_CMPSGE: /* CMPSGE */
case XT_CMPSN: /* CMPSN */
case XT_CMPSG: /* CMPSG */
if ((AC(ac) | AC(p3)) & XT_MBZ) return XT_MUUO; /* check length MBZ */
f1 = Read (ADDA (ea, 1), MM_OPND) & bytemask[GET_S (AC(p1))];
f2 = Read (ADDA (ea, 2), MM_OPND) & bytemask[GET_S (AC(p4))];
b1 = b2 = 0;
for (flg = 0; (AC(ac) | AC(p3)) && (b1 == b2); flg++) {
if (flg && (t = test_int ())) ABORT (t);
rlog = 0; /* clear log */
if (AC(ac)) b1 = incloadbp (p1, pflgs); /* src1 */
else b1 = f1;
if (AC(p3)) b2 = incloadbp (p4, pflgs); /* src2 */
else b2 = f2;
if (AC(ac)) AC(ac) = (AC(ac) - 1) & XLNTMASK;
if (AC(p3)) AC(p3) = (AC(p3) - 1) & XLNTMASK;
}
switch (xop) {
case XT_CMPSL:
return (b1 < b2)? XT_SKIP: XT_NOSK;
case XT_CMPSE:
return (b1 == b2)? XT_SKIP: XT_NOSK;
case XT_CMPSLE:
return (b1 <= b2)? XT_SKIP: XT_NOSK;
case XT_CMPSGE:
return (b1 >= b2)? XT_SKIP: XT_NOSK;
case XT_CMPSN:
return (b1 != b2)? XT_SKIP: XT_NOSK;
case XT_CMPSG:
return (b1 > b2)? XT_SKIP: XT_NOSK;
}
return XT_MUUO;
/* Convert binary to decimal instructions - checked against KS10 ucode
There are no MBZ tests.
AC'AC + 1 = double precision integer source
AC + 3 = flags and destination length
AC + 4 = destination byte pointer
*/
case XT_CVTBDO: /* CVTBDO */
case XT_CVTBDT: /* CVTBDT */
e1 = calc_ea (xinst, MM_EA); /* get ext inst addr */
if (xop == XT_CVTBDO) /* offset? */
xoff = (e1 & RSIGN)? (e1 | LMASK): e1; /* get offset */
rs[0] = AC(ac); /* get src opnd */
rs[1] = CLRS (AC(p1));
if (!TSTF (F_FPD)) { /* set up done yet? */
if (TSTS (AC(ac))) { DMOVN (rs); } /* get abs value */
for (i = 22; i > 1; i--) { /* find field width */
if (DCMPGE (rs, pwrs10[i])) break;
}
if (i > (AC(p3) & XLNTMASK)) return XT_NOSK;
if ((i < (AC(p3) & XLNTMASK)) && (AC(p3) & XT_LFLG)) {
f1 = Read (ADDA (ea, 1), MM_OPND);
filldst (f1, p3, (AC(p3) & XLNTMASK) - i, pflgs);
}
else AC(p3) = (AC(p3) & XFLGMASK) | i;
if (TSTS (AC(ac))) AC(p3) = AC(p3) | XT_MFLG;
if (AC(ac) | AC(p1)) AC(p3) = AC(p3) | XT_NFLG;
AC(ac) = rs[0]; /* update state */
AC(p1) = rs[1];
SETF (F_FPD); /* mark set up done */
}
/* Now do actual binary to decimal conversion */
for (flg = 0; AC(p3) & XLNTMASK; flg++) {
if (flg && (t = test_int ())) ABORT (t);
rlog = 0; /* clear log */
i = (int32) AC(p3) & XLNTMASK; /* get length */
if (i > 22) i = 22; /* put in range */
for (digit = 0; (digit < 10) && DCMPGE (rs, pwrs10[i]); digit++) {
rs[0] = rs[0] - pwrs10[i][0] - (rs[1] < pwrs10[i][1]);
rs[1] = (rs[1] - pwrs10[i][1]) & MMASK;
}
if (xop == XT_CVTBDO) digit = (digit + xoff) & DMASK;
else {
f1 = Read (e1 + (int32) digit, MM_OPND);
if ((i == 1) && (AC(p3) & XT_LFLG)) f1 = f1 >> 18;
digit = f1 & RMASK;
}
incstorebp (digit, p4, pflgs); /* store digit */
AC(ac) = rs[0]; /* mem access ok */
AC(p1) = rs[1]; /* update state */
AC(p3) = (AC(p3) & XFLGMASK) | ((AC(p3) - 1) & XLNTMASK);
}
CLRF (F_FPD); /* clear FPD */
return XT_SKIP;
/* Convert decimal to binary instructions - checked against KS10 ucode
There are no MBZ tests.
AC = flags and source length
AC + 1 = source byte pointer
AC + 3'AC + 4 = double precision integer result
*/
case XT_CVTDBT: /* CVTDBT */
case XT_CVTDBO: /* CVTDBO */
e1 = calc_ea (xinst, MM_EA); /* get ext inst addr */
if ((AC(ac) & XT_SFLG) == 0) AC(p3) = AC(p4) = 0; /* !S? clr res */
else AC(p4) = CLRS (AC(p4)); /* clear low sign */
if (xop == XT_CVTDBO) { /* offset? */
xoff = (e1 & RSIGN)? (e1 | LMASK): e1; /* get offset */
AC(ac) = AC(ac) | XT_SFLG; /* set S flag */
}
xflgs = AC(ac) & XFLGMASK; /* get xlation flags */
for (flg = 0; AC(ac) & XLNTMASK; flg++) {
if (flg && (t = test_int ())) ABORT (t);
rlog = 0; /* clear log */
b1 = incloadbp (p1, pflgs); /* get byte */
if (xop == XT_CVTDBO) b1 = (b1 + xoff) & DMASK;
else {
b1 = xlate (b1, e1, &xflgs, MM_OPND);
if (b1 < 0) { /* terminated? */
AC(ac) = xflgs | ((AC(ac) - 1) & XLNTMASK);
if (TSTS (AC(p3))) AC(p4) = SETS (AC(p4));
return XT_NOSK;
}
if (xflgs & XT_SFLG) b1 = b1 & XT_DGMASK;
else b1 = 0;
}
AC(ac) = xflgs | ((AC(ac) - 1) & XLNTMASK);
if ((b1 < 0) || (b1 > 9)) { /* bad digit? done */
if (TSTS (AC(p3))) AC(p4) = SETS (AC(p4));
return XT_NOSK;
}
AC(p4) = (AC(p4) * 10) + b1; /* base * 10 + digit */
AC(p3) = ((AC(p3) * 10) + (AC(p4) >> 35)) & DMASK;
AC(p4) = AC(p4) & MMASK;
}
if (AC(ac) & XT_MFLG) {
AC(p4) = -AC(p4) & MMASK;
AC(p3) = (~AC(p3) + (AC(p4) == 0)) & DMASK;
}
if (TSTS (AC(p3))) AC(p4) = SETS (AC(p4));
return XT_SKIP;
/* String move instructions - checked against KS10 ucode
Only the destination length is MBZ checked.
AC = flags (MOVST only) and source length
AC + 1 = source byte pointer
AC + 3 = destination length
AC + 4 = destination byte pointer
*/
case XT_MOVSO: /* MOVSO */
case XT_MOVST: /* MOVST */
case XT_MOVSRJ: /* MOVSRJ */
case XT_MOVSLJ: /* MOVSLJ */
if (AC(p3) & XT_MBZ) return XT_MUUO; /* test dst lnt MBZ */
f1 = Read (ADDA (ea, 1), MM_OPND); /* get fill */
switch (xop) { /* case on instr */
case XT_MOVSO: /* MOVSO */
AC(ac) = AC(ac) & XLNTMASK; /* trim src length */
xoff = calc_ea (xinst, MM_EA); /* get offset */
if (xoff & RSIGN) xoff = xoff | LMASK; /* sign extend 18b */
s2 = GET_S (AC(p4)); /* get dst byte size */
break;
case XT_MOVST: /* MOVST */
e1 = calc_ea (xinst, MM_EA); /* get xlate tbl addr */
break;
case XT_MOVSRJ: /* MOVSRJ */
AC(ac) = AC(ac) & XLNTMASK; /* trim src length */
if (AC(p3) == 0) return (AC(ac)? XT_NOSK: XT_SKIP);
if (AC(ac) > AC(p3)) { /* adv src ptr */
for (flg = 0; AC(ac) > AC(p3); flg++) {
if (flg && (t = test_int ())) ABORT (t);
AC(p1) = incbp (AC(p1));
AC(ac) = (AC(ac) - 1) & XLNTMASK;
}
}
else if (AC(ac) < AC(p3))
filldst (f1, p3, AC(p3) - AC(ac), pflgs);
break;
case XT_MOVSLJ: /* MOVSLJ */
AC(ac) = AC(ac) & XLNTMASK; /* trim src length */
break;
} /* end case xop */
xflgs = AC(ac) & XFLGMASK; /* get xlation flags */
if (AC(p3) == 0) return (AC(ac)? XT_NOSK: XT_SKIP);
for (flg = 0; AC(p3) & XLNTMASK; flg++) {
if (flg && (t = test_int ())) ABORT (t);
rlog = 0; /* clear log */
if (AC(ac) & XLNTMASK) { /* any source? */
b1 = incloadbp (p1, pflgs); /* src byte */
if (xop == XT_MOVSO) { /* offset? */
b1 = (b1 + xoff) & DMASK; /* test fit */
if (b1 & ~bytemask[s2]) {
AC(ac) = xflgs | ((AC(ac) - 1) & XLNTMASK);
return XT_NOSK;
}
}
else if (xop == XT_MOVST) { /* translate? */
b1 = xlate (b1, e1, &xflgs, MM_OPND);
if (b1 < 0) { /* upd flags in AC */
AC(ac) = xflgs | ((AC(ac) - 1) & XLNTMASK);
return XT_NOSK;
}
if (xflgs & XT_SFLG) b1 = b1 & XT_BYMASK;
else b1 = -1;
}
}
else b1 = f1;
if (b1 >= 0) { /* valid byte? */
incstorebp (b1, p4, pflgs); /* store byte */
AC(p3) = (AC(p3) - 1) & XLNTMASK; /* update state */
}
if (AC(ac) & XLNTMASK) AC(ac) = xflgs | ((AC(ac) - 1) & XLNTMASK);
}
return (AC(ac) & XLNTMASK)? XT_NOSK: XT_SKIP;
/* Edit - checked against KS10 ucode
Only the flags/pattern pointer word is MBZ checked.
AC = flags, pattern pointer
AC + 1 = source byte pointer
AC + 3 = mark address
AC + 4 = destination byte pointer
*/
case XT_EDIT: /* EDIT */
if (AC(ac) & XT_MBZE) return XT_MUUO; /* check pattern MBZ */
xflgs = AC(ac) & XFLGMASK; /* get xlation flags */
e1 = calc_ea (xinst, MM_EA); /* get xlate tbl addr */
for (ppi = 1, ret = -1, flg = 0; ret < 0; flg++, ppi = 1) {
if (flg && (t = test_int ())) ABORT (t);
rlog = 0; /* clear log */
pp = (int32) AC(ac) & AMASK; /* get pattern ptr */
b1 = Read (pp, MM_OPND); /* get pattern word */
pat = ED_PBYTE (b1, AC(ac)); /* get pattern byte */
switch ((pat < 0100)? pat: ((pat >> ED_V_POPC) + 0100)) {
case ED_STOP: /* stop */
ret = XT_SKIP; /* exit loop */
break;
case ED_SELECT: /* select source */
b1 = incloadbp (p1, pflgs); /* get src */
entad = (e1 + ((int32) b1 >> 1)) & AMASK;
f1 = ((Read (entad, MM_OPND) >> ((b1 & 1)? 0: 18)) & RMASK);
i = XT_GETCODE (f1);
if (i & 2) xflgs =
(i & 1)? xflgs | XT_MFLG: xflgs & ~XT_MFLG;
switch (i) {
case 00: case 02: case 03:
if (xflgs & XT_SFLG) f1 = f1 & XT_BYMASK;
else {
f1 = Read (INCA (ea), MM_OPND);
if (f1 == 0) break;
}
incstorebp (f1, p4, pflgs);
break;
case 01:
ret = XT_NOSK; /* exit loop */
break;
case 04: case 06: case 07:
xflgs = xflgs | XT_NFLG;
f1 = f1 & XT_BYMASK;
if ((xflgs & XT_SFLG) == 0) {
f2 = Read (ADDA (ea, 2), MM_OPND);
Write ((a10) AC(p3), AC(p4), MM_OPND);
if (f2) incstorebp (f2, p4, pflgs);
xflgs = xflgs | XT_SFLG;
}
incstorebp (f1, p4, pflgs);
break;
case 05:
xflgs = xflgs | XT_NFLG;
ret = XT_NOSK; /* exit loop */
break;
} /* end case xlate op */
break;
case ED_SIGST: /* start significance */
if ((xflgs & XT_SFLG) == 0) {
f2 = Read (ADDA (ea, 2), MM_OPND);
Write ((a10) AC(p3), AC(p4), MM_OPND);
if (f2) incstorebp (f2, p4, pflgs);
xflgs = xflgs | XT_SFLG;
}
break;
case ED_FLDSEP: /* separate fields */
xflgs = 0;
break;
case ED_EXCHMD: /* exchange */
f2 = Read ((int32) (AC(p3) & AMASK), MM_OPND);
Write ((int32) (AC(p3) & AMASK), AC(p4), MM_OPND);
AC(p4) = f2;
break;
case (0100 + (ED_MESSAG >> ED_V_POPC)): /* message */
if (xflgs & XT_SFLG)
f1 = Read (ea + (pat & ED_M_NUM) + 1, MM_OPND);
else {
f1 = Read (ea + 1, MM_OPND);
if (f1 == 0) break;
}
incstorebp (f1, p4, pflgs);
break;
case (0100 + (ED_SKPM >> ED_V_POPC)): /* skip on M */
if (xflgs & XT_MFLG) ppi = (pat & ED_M_NUM) + 2;
break;
case (0100 + (ED_SKPN >> ED_V_POPC)): /* skip on N */
if (xflgs & XT_NFLG) ppi = (pat & ED_M_NUM) + 2;
break;
case (0100 + (ED_SKPA >> ED_V_POPC)): /* skip always */
ppi = (pat & ED_M_NUM) + 2;
break;
default: /* NOP or undefined */
break;
} /* end case pttrn op */
AC(ac) = AC(ac) + ((ppi & ED_M_PBYN) << ED_V_PBYN);
AC(ac) = AC(ac) + (ppi >> 2) + ((AC(ac) & ED_PBYNO)? 1: 0);
AC(ac) = xflgs | (AC(ac) & ~(XT_MBZE | XFLGMASK));
}
return ret;
} /* end case xop */
return XT_MUUO;
}
/* Supporting subroutines */
/* Increment byte pointer, register version */
d10 incbp (d10 bp)
{
int32 p, s;
p = GET_P (bp); /* get P and S */
s = GET_S (bp);
p = p - s; /* adv P */
if (p < 0) { /* end of word? */
bp = (bp & LMASK) | (INCR (bp)); /* increment addr */
p = (36 - s) & 077; /* reset P */
}
bp = PUT_P (bp, p); /* store new P */
return bp;
}
/* Increment and load byte, extended version - uses register log */
d10 incloadbp (int32 ac, int32 pflgs)
{
a10 ba;
d10 bp, wd;
int32 p, s;
bp = AC(ac) = incbp (AC(ac)); /* increment bp */
XT_INSRLOG (ac, rlog); /* log change */
p = GET_P (bp); /* get P and S */
s = GET_S (bp);
ba = calc_ea (bp, MM_EA_XSRC); /* calc bp eff addr */
wd = Read (ba, MM_XSRC); /* read word */
wd = (wd >> p) & bytemask[s]; /* get byte */
return wd;
}
/* Increment and deposit byte, extended version - uses register log */
void incstorebp (d10 val, int32 ac, int32 pflgs)
{
a10 ba;
d10 bp, wd, mask;
int32 p, s;
bp = AC(ac) = incbp (AC(ac)); /* increment bp */
XT_INSRLOG (ac, rlog); /* log change */
p = GET_P (bp); /* get P and S */
s = GET_S (bp);
ba = calc_ea (bp, MM_EA_XDST); /* calc bp eff addr */
wd = Read (ba, MM_XDST); /* read, write test */
mask = bytemask[s] << p; /* shift mask, val */
val = val << p;
wd = (wd & ~mask) | (val & mask); /* insert byte */
Write (ba, wd & DMASK, MM_XDST);
return;
}
/* Translate byte
Arguments
by = byte to translate
tblad = virtual address of translation table
*xflgs = pointer to word containing translation flags
prv = previous mode flag for table lookup
Returns
xby = >= 0, translated byte
< 0, terminate translation
*/
d10 xlate (d10 by, a10 tblad, d10 *xflgs, int32 prv)
{
a10 ea;
int32 tcode;
d10 tblent;
ea = (tblad + ((int32) by >> 1)) & AMASK;
tblent = ((Read (ea, prv) >> ((by & 1)? 0: 18)) & RMASK);
tcode = XT_GETCODE (tblent); /* get xlate code */
switch (tcode) {
case 00:
return (*xflgs & XT_SFLG)? tblent: by;
case 01:
break;
case 02:
*xflgs = *xflgs & ~XT_MFLG;
return (*xflgs & XT_SFLG)? tblent: by;
case 03:
*xflgs = *xflgs | XT_MFLG;
return (*xflgs & XT_SFLG)? tblent: by;
case 04:
*xflgs = *xflgs | XT_SFLG | XT_NFLG;
return tblent;
case 05:
*xflgs = *xflgs | XT_NFLG;
break;
case 06:
*xflgs = (*xflgs | XT_SFLG | XT_NFLG) & ~XT_MFLG;
return tblent;
case 07:
*xflgs = *xflgs | XT_SFLG | XT_NFLG | XT_MFLG;
return tblent;
} /* end case */
return -1;
}
/* Fill out the destination string
Arguments:
fill = fill
ac = 2 word AC block (length, byte pointer)
cnt = fill count
pflgs = PXCT flags
*/
void filldst (d10 fill, int32 ac, d10 cnt, int32 pflgs)
{
int32 i, t;
int32 p1 = ADDA (ac, 1);
for (i = 0; i < cnt; i++) {
if (i && (t = test_int ())) ABORT (t);
rlog = 0; /* clear log */
incstorebp (fill, p1, pflgs);
AC(ac) = (AC(ac) & XFLGMASK) | ((AC(ac) - 1) & XLNTMASK);
}
rlog = 0;
return;
}
/* Clean up after page fault
Arguments:
logv = register change log
For each register in logv, decrement the register's contents as
though it were a byte pointer. Note that the KS10 does <not>
do a full decrement calculation but merely adds S to P.
*/
void xtcln (int32 logv)
{
int32 p, reg;
while (logv) {
XT_REMRLOG (reg, logv); /* get next reg */
if ((reg >= 0) && (reg < AC_NUM)) {
p = GET_P (AC(reg)) + GET_S (AC(reg)); /* get p + s */
AC(reg) = PUT_P (AC(reg), p); /* p <- p + s */
}
}
return;
}